Idioma:
  Português  
Logotipo
Navegação
ilustração rodapé
Busca Rápida
Use palavras-chave para achar o que procura.
ilustração rodapé
Estatísticas
UO
0 usuários on-line
VO
255 visitantes on-line
VI
3.091.828 visitas
(Ano 2014)
ilustração rodapé
Redes Sociais
redeSocial2
redeSocial1
ilustração rodapé
RSS
RSS
ilustração rodapé
Isomeria Óptica
ImprimirImprimir ImprimirEnviar para um amigo
Compartilhe: Delicious Facebook Twitter Digg Google Technorati Live Yahoo

Fármacos e Quiralidade

Originalmente publicado em Química Nova na Escola, Cadernos Temáticos, maio 2001
Apoio: Sociedade Brasileira de Química
Edição: Leila Cardoso Teruya
Coordenação: Guilherme Andrade Marson
Introdução

Um dos assuntos mais fascinantes para um estudante ou alguém interessado na área de medicamentos é saber como uma substância química, utilizada como fármaco, exerce a sua atividade dentro do nosso corpo. A resposta a essa questão nem sempre é muito simples e envolve estudos de elevada complexidade e custo.

Entre os fármacos à venda nas farmácias do nosso país, existem alguns que apresentam uma particularidade em sua estrutura, que é de fundamental importância para a atividade biológica.

Alguns desses fármacos são quirais ou têm quiralidade, ou seja, têm em sua estrutura um ou mais átomos (na maioria das vezes carbono) que têm a sua orientação tridimensional muito bem definida. A modificação dessa orientação pode levar à diminuição do efeito biológico, à sua total supressão ou ao aparecimento de um efeito biológico adverso.

Convém deixar claro que a quiralidade não é condição para que uma substância apresente efeito farmacológico, entretanto se a estrutura tiver um centro quiral é importante saber qual a orientação espacial responsável pela atividade.

Cabe ressaltar que as legislações brasileira e mundial, na área farmacêutica, têm estabelecido limites à venda de fármacos cujas estruturas apresentem quiralidade. Nesses casos, primeiro é necessário saber qual orientação tridimensional do centro quiral é responsável pela atividade farmacológica. Esse conhecimento determinará como o fármaco deverá ser consumido pelo público.

Nesse aspecto, métodos químicos que permitam o controle da orientação tridimensional do centro quiral, no momento em que o fármaco esteja sendo produzido, são de extrema importância. É aí que a síntese assimétrica, que é a reunião de estratégias e métodos químicos que permitem efetuar o controle tridimensional de um determinado centro quiral, mostra sua importância.

Como o tema a ser tratado é de razoável complexidade, começaremos por definir alguns conceitos de estereoquímica (quiralidade, centro assimétrico, configuração absoluta). Em um segundo momento esses conceitos serão utilizados para explicar a interação de fármacos quirais com o nosso corpo (biofase). Finalmente, discutiremos as metodologias para a preparação de fármacos que têm centros quirais, que é a síntese assimétrica.

Assimetria molecular
Figura 1: Estrutura do ácido (+)-tartárico.

Figura 1: Estrutura do ácido (+)-tartárico.

Alguns seres humanos têm a capacidade de observar fatos corriqueiros e extrair deles conclusões que representam saltos gigantescos no conhecimento científico da humanidade. Uma dessas pessoas foi o cientista francês Louis Pasteur, que deu contribuições significativas em vários campos do conhecimento humano, tais como biologia, microbiologia e química.

Uma das observações feitas por Pasteur estava relacionada à forma e às propriedades ópticas de duas substâncias isoladas do tártaro que se depositava nos barris, no processo de envelhecimento do vinho. Uma dessas substâncias, conhecida como ácido tartárico (Figura 1) tinha a capacidade, quando dissolvida em água, de rodar o plano da luz polarizada para o lado direito. Por convenção, ficou conhecido como (+)-ácido tartárico.

A outra substância conhecida como ácido paratartárico ou racêmico (do latim racemus = cacho de uva), era estruturalmente idêntica ao ácido tartárico, mas não desviava o plano da luz polarizada. Pasteur notou que essa substância cristalizava quando reagia com amônia, formando cristais que eram estruturalmente diferentes um do outro (Figura 2).

Figura 2: Cristais do sal de amônia de ácido tartárico separados.

Figura 2: Cristais do sal de amônia de ácido tartárico separados.

Munido de muita paciência, de uma lupa e uma pinça, Pasteur separou os cristais um a um, e os agrupou em dois montes (Sheldon, 1993). Os cristais de um dos montes eram semelhantes aos cristais do ácido (+)-tartárico e desviavam o plano da luz polarizada para o lado direito, quando em solução. Os cristais do outro monte desviavam o plano da luz polarizada para o lado esquerdo.

O intrigante nessa observação era o fato de que as inclinações dos desvios terem exatamente o mesmo valor, só se diferenciando nas orientações. Assim, uma solução desviava o plano da luz polarizada para a direita e a outra desviava para a esquerda. Outro fato importante é que as duas substâncias tinham exatamente as mesmas propriedades físicas (ponto de fusão, ponto de ebulição etc). A única diferença entre elas era o comportamento diante de um feixe de luz polarizada.

Pasteur chamou de racemato a mistura inicial das duas substâncias em partes iguais, que não desvia o plano da luz polarizada. Essas observações estabeleceram as bases para o surgimento da moderna estereoquímica, que é a parte da química orgânica que se dedica a estudar as moléculas em três dimensões.

Figura 3: Possível arranjo tetraédrico das moléculas de carbono.

Figura 3: Possível arranjo tetraédrico das moléculas de carbono.

Tentando estabelecer uma relação entre o desvio do plano da luz polarizada e o arranjo espacial das moléculas de carbono, Pasteur sugeriu que os substituintes ao redor do átomo de carbono deveriam ter provavelmente um arranjo tetraédrico (Figura 3).

Entretanto, essa sugestão não ganhou muito crédito junto à comunidade cientifica da época, e acabou caindo no esquecimento.

Tentando solucionar essa questão, dois químicos, van’t Hoff (1874) e le Bel (1874), em trabalhos independentes, deram continuidade às idéias de outro químico, chamado Kekulé, e propuseram que os quatro substituintes do carbono se orientam no espaço, cada um ocupando um vértice de um tetraedro, com o carbono no centro. Esse arranjo permitiria a existência de moléculas que teriam como única diferença entre elas, a orientação dos seus substituintes no espaço.

Se tivéssemos ao redor do carbono quatro substituintes diferentes, entre todos os arranjos possíveis, somente dois e não mais que dois tetraedros seriam diferentes entre si. Um desses tetraedros é a imagem refletida no espelho do outro, sendo impossível fazer coincidir todos os substituintes, se uma estrutura for sobreposta à outra (Figura 4).

Figura 4: Os dois arranjos espaciais possíveis dos substituintes do ácido lático.

Figura 4: Os dois arranjos espaciais possíveis dos substituintes do ácido lático.

Na verdade, essa proposta de van’t Hoff evidenciou a existência de duas estruturas espaciais diferentes para a mesma substância. Segundo van’t Hoff, a existência de atividade óptica estava ligada à presença de um carbono assimétrico na molécula (Figura 4). A presença de quatro substituintes diferentes entre si e ligados ao carbono é condição suficiente, mas não a única, para haver assimetria em uma molécula. Dois meses mais tarde, le Bel fez propostas muito próximas daquelas feitas por van’t Hoff.

Essas reflexões e sugestões abriram o caminho para o nosso estágio atual de compreensão de como um fármaco com um carbono quiral exerce a sua ação no interior do nosso corpo.

Princípios de estereoquímica
Figura 5: A letra R e a sua imagem no espelho.

Figura 5: A letra R e a sua imagem no espelho.

A química orgânica trata da relação existente entre a estrutura molecular e as propriedades físicas de moléculas de carbono. A parte da química orgânica que trata da estrutura em três dimensões é chamada de ‘estereoquímica’. Um aspecto importante da estereoquímica é a existência do estereoisomerismo.

Estruturas isoméricas (do grego isoméres = partes iguais) que diferem entre si unicamente pelo arranjo tridimensional dos seus substituintes são chamadas de estereoisômeros.

A ocorrência de assimetria (ou simetria) é uma importante característica de figuras geométricas que têm duas ou três dimensões. Por exemplo, no alfabeto existem letras que são simétricas e outras não-simétricas em duas dimensões. Se considerarmos a letra R e a refletirmos no espelho, veremos a imagem mostrada na Figura 5.

Figura 6: Imagem especular da mão humana.

Figura 6: Imagem especular da mão humana.

Se simplesmente dobrarmos a folha de papel, será possível sobrepor a imagem especular da letra R sobre o original, ou seja, os R’s são sobreponíveis.

Vamos tentar tratar o assunto através de uma estrutura com que todos nós estamos bem familiarizados, as nossas mãos. Na Figura 6 vemos a representação da mão humana e de sua imagem especular (Kalsi, 1990).

Se prestarmos atenção na figura acima, veremos que a imagem especular da mão não pode ser sobreposta à mão original. Este é um dos exemplos mais simples de assimetria.

O que é quiralidade?
Figura 7: Representação de uma molécula quiral e outra aquiral.

Figura 7: Representação de uma molécula quiral e outra aquiral.

Quiralidade é um atributo geométrico, e diz-se que um objeto que não pode ser sobreposto à sua imagem especular é quiral, enquanto que um objeto aquiral é aquele em que a sua imagem especular pode ser sobreposta ao objeto original. Existem vários objetos quirais, tais como as mãos (ver Figura 6), conchas marinhas etc. Essa propriedade também é exibida por moléculas orgânicas (Allinger, 1983).

Uma molécula é quiral quando a sua imagem especular não puder ser sobreposta à molécula original. Se houver possibilidade de sobreposição entre uma molécula e sua imagem especular ela é aquiral (Figura 7).

Um centro assimétrico é aquele no qual os substituintes ligados a ele são diferentes entre si (Figura 8). Uma outra forma de representação que vale a pena ressaltar é a B, mostrada na Figura 8. Se imaginarmos um plano que contém os grupamentos CH3 e H, a linha cheia indica que o grupamento CO2H está na frente do plano e a linha tracejada indica que o grupamento Cl está na parte de trás desse plano imaginário.

Figura 8: Representações de um centro assimétrico.

Figura 8: Representações de um centro assimétrico.

Enantiômeros
Figura 9: Enantiômeros de uma molécula orgânica.

Figura 9: Enantiômeros de uma molécula orgânica.

O tipo mais comum de uma molécula quiral contém um carbono tetraédrico, no qual estão ligados quatro diferentes grupamentos. O átomo de carbono é o centro estereogênico ou assimétrico da molécula. Uma molécula desse tipo pode existir em dois arranjos espaciais diferentes, que são estereoisômeros um do outro. As duas estruturas, entretanto, não podem ser sobrepostas, já que uma é a imagem especular da outra. Esses tipos de estereoisômeros são chamados de enantiômeros (do grego, enantio = opostos) (Figura 9).

A única diferença que esses enantiômeros apresentam é a propriedade de desviar o plano da luz polarizada, quando uma solução de cada um deles é submetida a um equipamento chamado polarímetro. Todas as demais propriedades físicas são iguais.

Atividade óptica

Uma onda de luz viaja no espaço vibrando em vários planos; quando um feixe de luz é submetido a um cristal especial, existente no polarímetro, ela passa a vibrar em um único plano. Quando uma solução contendo um enantiômero é submetida a esse equipamento, ela pode desviar o plano para a direita ou para a esquerda (Figura 10).

Se o plano é desviado para a esquerda, diz-se que a substância é levorrotatória ou levógira (latim laevu = esquerda). Se o plano for desviado para a direita, diz-se que a substância é dextrorrotatória ou dextrógira (latim dextro = direita). Essa propriedade dos enantiômeros é conhecida como rotação óptica.

Por convenção, coloca-se um sinal de menos entre parênteses (-), para nomear uma substância levorrotatória e um sinal de mais (+), para designar uma substância dextrorrotatória.

Figura 10: a. polarização da onda de luz em um polarímetro; b. desvio do plano da luz polarizada ocasionado por um enantiômero.

Figura 10: a. polarização da onda de luz em um polarímetro; b. desvio do plano da luz polarizada ocasionado por um enantiômero.

Diasteroisômeros

Para substâncias que têm mais de um carbono assimétrico, é possível formar mais do que dois estereoisômeros (Figura 11).

Quando adicionamos um segundo centro assimétrico a uma molécula, os grupamentos se orientam no espaço, levando à formação de 2 pares de isômeros diferentes. Se tivermos n centros assimétricos teremos 2n isômeros possíveis. Enantiômeros existem todo o tempo em pares e alguns dos estereoisômeros, formados com a inclusão de centros assimétricos, não são imagens especulares dos outros. Isômeros que não são imagens especulares uns dos outros são chamados de diastereoisômeros. Se prestarmos atenção à Figura 11, veremos que nos diastereoisômeros houve modificação da orientação espacial em apenas um dos carbonos assimétricos. Nos enantiômeros os dois centros mudam, ao mesmo tempo, de orientação.

Figura 11: Isômeros formados com a inclusão de um segundo centro assimétrico.

Figura 11: Isômeros formados com a inclusão de um segundo centro assimétrico.

Como devemos fazer para escrever a orientação espacial correta de estereoisômeros?

Para podermos desenhar e reconhecer de forma correta a maneira como os substituintes de um carbono assimétrico orientam-se no espaço, precisamos de uma notação fácil e que possa ser reconhecida em qualquer lugar do mundo. Essa notação foi proposta por Cahn, Ingold e Prelog e é conhecida como notação R e S (Allinger, 1983).

Esses pesquisadores estabeleceram uma regra de prioridade entre diferentes substituintes ligados ao carbono assimétrico. A regra baseia-se no peso molecular dos átomos ligados ao carbono estereogênico. Assim, um heteroátomo (por exemplo, I > Br > Cl > S > O > N) tem maior prioridade do que o carbono. Uma ligação dupla (-CH=CH2) tem uma prioridade maior do que uma ligação simples (-CH2-CH2-). Os princípios básicos dessa regra são exemplificados na molécula do aminoácido fenilglicina (Figura 12).

Se tivermos mais de um centro quiral na molécula, esse procedimento deve ser repetido para cada um separadamente. Convém ressaltar que essa notação não está diretamente relacionada com o desvio do plano da luz polarizada, que deve ser medida no polarímetro. Ela é utilizada para determinar, sem nenhuma ambigüidade, como os substituintes estão orientados no espaço, ao redor do carbono assimétrico. Portanto, uma substância pode ser R e desviar o plano da luz polarizada para a esquerda, escreve-se então (-)-(R)-, ou desviar o plano para a direita e ter a configuração absoluta S, escreve-se (+)-(S)-.

Como todas essas regras e conhecimentos estão relacionados à atividade farmacológica?

Figura 12: Aplicação da regra R e S de Cahn-Ingold-Prelog.

Figura 12: Aplicação da regra R e S de Cahn-Ingold-Prelog.

Quiralidade e atividade biológica

Existe nas farmácias da sua cidade uma série de substâncias, utilizadas como fármacos, que apresentam em sua estrutura um carbono assimétrico. A supressão da quiralidade nesses fármacos leva ao desaparecimento da atividade biológica. Por outro lado, a inversão da orientação dos grupamentos no centro assimétrico pode levar a uma modificação importante da atividade biológica. Nesse caso, a regra R e S é importante, pois permite determinar qual é o arranjo espacial correto para cada estereoisômero do fármaco separado. Se soubermos disso e associarmos ao efeito biológico, será possível saber qual é a configuração absoluta do estereoisômero que tem atividade farmacológica. Na Tabela 1 apresentamos alguns exemplos disso.

Na Tabela 1 apresentamos alguns exemplos de substâncias vendidas nas farmácias como fármacos. Todos apresentam em sua estrutura um ou mais centros assimétricos. Como podemos perceber, a modificação da orientação espacial dos substituintes ao redor do centro assimétrico muda completamente o efeito biológico no nosso corpo.

Por exemplo, a talidomida é um sedativo leve e pode ser utilizado no tratamento de náuseas, muito comum no período inicial da gravidez. Quando foi lançado era considerado seguro para o uso de grávidas, sendo administrado como uma mistura racêmica, ou seja, uma mistura composta pelos seus dois enantiômeros, em partes iguais.

Entretanto, uma coisa que não se sabia na época é que o enantiômero S apresentava uma atividade teratogênica (do grego terás = monstro; gene = origem), ou seja, levava à má formação congênita, afetando principalmente o desenvolvimento normal dos braços e pernas do bebê. O uso indiscriminado desse fármaco levou ao nascimento de milhares de pessoas com gravíssimos defeitos físicos (Figura 13) (Para maiores informações, veja http://www.thalidomide.org/FfdN/english/eindex.html).

Esse é um exemplo clássico de um efeito nocivo grave causado pelo enantiômero de um fármaco comercial. Esse lamentável acontecimento despertou a atenção da comunidade científica e das autoridades farmacêuticas sobre a importância de um centro assimétrico na atividade farmacológica.

Um outro exemplo é o aspartame, adoçante sintético, com uso largamente difundido no Brasil e no mundo. O estereoisômero S,S é doce, enquanto que o R,R é amargo.

Figura 13: Anomalias de formação causadas pelo enantiômero S da talidomida.

Figura 13: Anomalias de formação causadas pelo enantiômero S da talidomida.

Como podemos explicar esses fatos?

Um fármaco pode exercer a sua atividade no interior do nosso corpo (biofase) de várias formas. Uma dessas formas é através da interação com estruturas chamadas receptores, que são proteínas de elevado grau de organização espacial, que se encontram na membrana da célula. Esses receptores agem como pequenos interruptores de grande seletividade. Uma vez ligados, eles podem desencadear uma série de reações intracelulares para dar origem a um efeito biológico. Um fármaco também pode interagir com uma enzima, que é uma proteína de elevado nível de organização.

Se essas estruturas têm quiralidade, podemos sugerir que para ter interação com elas, o fármaco deve ter um arranjo espacial de sua estrutura muito bem definido. Esse arranjo deve coincidir com aquele da estrutura com a qual ele irá interagir.

Na literatura especializada existem alguns modelos que permitem explicar essa interação. Um desses modelos está mostrado esquematicamente na Figura 14 (Easson e Stedman, 1933).

Figura 14: Modelo para explicar a interação biológica.

Figura 14: Modelo para explicar a interação biológica.

O modelo mostra duas possibilidades de arranjo espacial de grupos hipotéticos. Em um arranjo, a interação do fármaco pode ocorrer, no outro ela só ocorre parcialmente.

Por exemplo, a noradrenalina é um hormônio liberado pelo organismo humano quando precisamos de uma dose de energia imediata. É o hormônio lute ou fuja, liberado em situações em que você precisa de maior atenção. Por exemplo, quando toma-se um susto brutal e o coração bate mais rápido, ou quando vai-se brigar com alguém ou então vai-se fugir da briga. Esse hormônio apresenta na sua estrutura um centro assimétrico, de configuração absoluta R (Figura 15).

Figura 15: Aplicação do modelo à noradrenalina.

Figura 15: Aplicação do modelo à noradrenalina.

Se invertermos o arranjo espacial (configuração absoluta) do centro assimétrico presente na adrenalina, impediremos que ocorra uma das interações, levando a uma modificação do efeito biológico.

Uma outra possibilidade de ação é através de uma interação com enzimas do nosso corpo. As enzimas, da mesma forma que os receptores das membranas celulares, são proteínas e têm um arranjo espacial bem organizado e definido. Para que a enzima possa estabelecer ligações adequadas com um fármaco, este tem que apresentar um arranjo espacial específico.

Esses modelos de interação permitem estabelecer a importância da quiralidade para a atividade biológica. Qualquer mudança de orientação espacial do carbono assimétrico leva, na quase totalidade dos casos, a uma alteração no meio biológico.

Na figura abaixo mostramos uma alusão que resume a importância que a quiralidade pode ter para o efeito biológico. Não adianta tentarmos usar a luva esquerda na imagem especular da mão. Elas não se encaixam. O mesmo ocorre com a interação de um fármaco que tem um carbono assimétrico em sua estrutura (Figura 16).

O controle da estereoquímica absoluta do centro assimétrico presente em um fármaco pode ser realizado na sua fabricação. Existem vários métodos químicos que permitem a realização dessa importante tarefa. Esses métodos constituem a base da síntese assimétrica.

Figura 16: Alusão à interação do fármaco quiral com o nosso corpo.

Figura 16: Alusão à interação do fármaco quiral com o nosso corpo.

Síntese orgânica

A síntese orgânica aplica os conhecimentos da química orgânica, visando, entre outras coisas, a preparação de novas moléculas ou de moléculas já conhecidas. Ela permite a preparação, em uma fábrica, das substâncias que são utilizadas como fármacos. O enorme desenvolvimento dessa área do conhecimento, nos últimos vinte anos, possibilitou um grande avanço da química, principalmente na preparação de fármacos.

Uma síntese orgânica de moléculas que contêm centros assimétricos pode ser classificada como racêmica ou assimétrica. O produto de uma síntese racêmica será um fármaco composto de uma mistura de seus possíveis estereoisômeros em partes iguais. Por outro lado, o produto de uma síntese assimétrica será um fármaco de elevada pureza óptica, ou seja, se estiver contaminado com o outro estereoisômero será em quantidades inferiores a 5%.

No mercado mundial existem vários fármacos que já são vendidos nas farmácias em suas formas opticamente puras, ou seja, sem a mistura com o outro isômero. Na Tabela 2 mostramos alguns exemplos.

A venda de fármacos na forma de mistura racêmica ainda ocorre. Entretanto, é necessário saber qual é o estereoisômero responsável pela atividade e ter absoluta certeza que o estereoisômero inativo, presente na mistura, não tem nenhuma atividade biológica adversa.

Do ponto de vista do consumidor, a administração de um fármaco em sua mistura racêmica tem algumas desvantagens:

1. A dose a ser utilizada deve ser aumentada, pois somente metade dela tem o efeito farmacológico desejado;

2. O paciente ingere, a cada dose do fármaco, 50% de uma substância química desnecessária.

O único fator, no nosso entender, que dificulta a venda de fármacos quirais em sua forma opticamente pura é o custo de uma síntese assimétrica. Normalmente, os métodos usados são caros, o que eleva o preço final do fármaco para o consumidor. Entretanto, esse fator limitante tende a desaparecer, principalmente devido às exigências legais.

Uma síntese assimétrica, por sua vez, pode ser enantiosseletiva ou diastereosseletiva. No primeiro caso é formado, com grande preferência, um dos possíveis enantiômeros de um fármaco. Uma síntese diastereosseletiva formará preferencialmente um dos diastereoisômeros de um fármaco (Esquema 1).

Esquema 1: Tipos de síntese orgânica.

Esquema 1: Tipos de síntese orgânica.

Conclusão

A presença de centros assimétricos em alguns fármacos à venda nas farmácias está relacionada à sua atividade farmacológica. Qualquer alteração na orientação espacial desses centros pode conduzir à total inativação do fármaco, à diminuição do efeito biológico ou então ao aparecimento de um efeito contrário, que pode ser extremamente danoso para a saúde dos consumidores.

Fármacos quirais necessitam de cuidados especiais por parte das autoridades farmacêuticas, no sentido de garantir que somente aquele estereoisômero responsável pela atividade seja vendido nas farmácias.

Devido aos métodos que são utilizados na sua fabricação, o custo final desse tipo de fármaco para o consumidor ainda é elevado. Entretanto, devido às exigências legais esse custo deve cair ao longo do tempo, principalmente se levarmos em consideração que o constante aprimoramento da pesquisa em síntese orgânica deve levar ao desenvolvimento de novos, mais baratos e mais eficientes métodos de fabricação.

Nota

O artigo original apresenta os métodos de preparação dos fármacos Ibuprofeno (Motrin®, Algifen®) e Captopril (Capoten®).

  • Referências
    1. ALLINGER, N.D. Química orgânica, 3 ed. Rio de Janeiro: Editora Guanabara Dois, capítulo 6, 1983.
    2. ALPER, H e HAMEL, N. J. Am. Chem. Soc., v. 109, p. 7122-7127, 1990.
    3. BASILE, A.C. e ZANINI, A.C. Dicionário de medicamentos genéricos Zanini-Oga, 2 ed. São Paulo: Ipex Comercial Editora, 1999.
    4. EASSON, L.H. e STEDMAN, E. Biochem. J., v. 27, p. 1257-1266, 1933.
    5. KALSI, P.S. Stereochemistry – Conformation and mechanism. Nova Deli: John Wiley & Sons: capítulo 1, 1990.
    6. LE BEL, J.A. Bull. Soc. Chim. Fr., v. 22, p. 337-347, 1874.
    7. LEDNICER, D. Strategies for organic drug synthesis and design. Nova Iorque: John Wiley & Sons, p. 53-57, 1998.
    8. SHELDON, R.A. Chirotechnology – Industrial synthesis of optically active compounds. Nova Iorque: Marcel Dekker Inc., p. 1-71, 1993.
    9. SHIMAKAZI, M.; HASEGAWA, J.; KAN, K.; NOMURA, K.; NOSE, Y.; KONDO, H.; OHASHI, T. e WATANABE, K. Chem. Pharm. Bull., v. 30, p. 3139-3146, 1982.
    10. VAN’T Hoff, J.H. Arch. Neerl. Sci. Exacts Nat., v. 9, p. 445-454, 1874.
ImprimirImprimir ImprimirEnviar para um amigo
Compartilhe: Delicious Facebook Twitter Digg Google Technorati Live Yahoo
Login
ilustração rodapé
Tema
91726 visitas
Tema
53728 visitas
Tema
48877 visitas
Tema
43715 visitas
Tema
30523 visitas
Tema
30332 visitas
Tema
28535 visitas
Tema
28063 visitas
Tema
22283 visitas
Tema
19880 visitas
Tema
19725 visitas
Tema
19674 visitas
Tema
18914 visitas
Tema
18830 visitas
Tema
18763 visitas
Tema
17720 visitas
Tema
15631 visitas
Tema
15605 visitas
Tema
12499 visitas
Tema
11940 visitas
Tema
9402 visitas
Tema
9205 visitas
Tema
8223 visitas
Tema
8025 visitas
Tema
7887 visitas
Tema
7530 visitas
Tema
3767 visitas
Tema
3344 visitas
Tema
3218 visitas
Tema
2760 visitas
Tema
1943 visitas
Tema
1737 visitas
Tema
1342 visitas
ilustração rodapé
Conceito
73980 visitas
Conceito
67193 visitas
Conceito
48780 visitas
Conceito
48703 visitas
Conceito
45125 visitas
Conceito
35682 visitas
Conceito
34207 visitas
Conceito
32897 visitas
Conceito
27605 visitas
Conceito
25652 visitas
Conceito
24406 visitas
Conceito
23037 visitas
Conceito
16453 visitas
Conceito
16366 visitas
Conceito
15550 visitas
Conceito
15418 visitas
Conceito
15379 visitas
Conceito
14430 visitas
Conceito
14279 visitas
Conceito
13379 visitas
Conceito
13119 visitas
Conceito
12303 visitas
Conceito
11321 visitas
Conceito
10011 visitas
Conceito
9531 visitas
Conceito
8149 visitas
Conceito
7100 visitas
Conceito
5800 visitas
Conceito
3909 visitas
Conceito
3716 visitas
Conceito
3608 visitas
Conceito
2765 visitas
ilustração rodapé
Molécula
8374 visitas
Molécula
7323 visitas
Molécula
6381 visitas
Molécula
6251 visitas
Molécula
5617 visitas
Molécula
5312 visitas
Molécula
5151 visitas
Molécula
4618 visitas
Molécula
4555 visitas
Molécula
4491 visitas
Molécula
4081 visitas
Molécula
4024 visitas
Molécula
3991 visitas
Molécula
3946 visitas
Molécula
3822 visitas
Molécula
3777 visitas
Molécula
3746 visitas
Molécula
3704 visitas
Molécula
3636 visitas
Molécula
3625 visitas
Molécula
3614 visitas
Molécula
3557 visitas
Molécula
3483 visitas
Molécula
3309 visitas
Molécula
3242 visitas
Molécula
3239 visitas
Molécula
3184 visitas
Molécula
3112 visitas
Molécula
3110 visitas
Molécula
3108 visitas
Molécula
3064 visitas
Molécula
3056 visitas
Molécula
2967 visitas
Molécula
2962 visitas
Molécula
2934 visitas
Molécula
2930 visitas
Molécula
2928 visitas
Molécula
2903 visitas
Molécula
2830 visitas
Molécula
2760 visitas
Molécula
2751 visitas
Molécula
2748 visitas
Molécula
2697 visitas
Molécula
2652 visitas
Molécula
2643 visitas
Molécula
2620 visitas
Molécula
2618 visitas
Molécula
2565 visitas
Molécula
2553 visitas
Molécula
2506 visitas
Molécula
2488 visitas
Molécula
2467 visitas
Molécula
2466 visitas
Molécula
2461 visitas
Molécula
2453 visitas
Molécula
2387 visitas
Molécula
2379 visitas
Molécula
2342 visitas
Molécula
2279 visitas
Molécula
2277 visitas
Molécula
2265 visitas
Molécula
2233 visitas
Molécula
2202 visitas
Molécula
2163 visitas
Molécula
2160 visitas
Molécula
2156 visitas
Molécula
2111 visitas
Molécula
2098 visitas
Molécula
2097 visitas
Molécula
2092 visitas
Molécula
2082 visitas
Molécula
2078 visitas
Molécula
2069 visitas
Molécula
2029 visitas
Molécula
2023 visitas
Molécula
2011 visitas
Molécula
1970 visitas
Molécula
1959 visitas
Molécula
1946 visitas
Molécula
1942 visitas
Molécula
1940 visitas
Molécula
1898 visitas
Molécula
1894 visitas
Molécula
1866 visitas
Molécula
1858 visitas
Molécula
1857 visitas
Molécula
1844 visitas
Molécula
1838 visitas
Molécula
1833 visitas
Molécula
1798 visitas
Molécula
1776 visitas
Molécula
1774 visitas
Molécula
1761 visitas
Molécula
1756 visitas
Molécula
1701 visitas
Molécula
1686 visitas
Molécula
1663 visitas
Molécula
1652 visitas
Molécula
1623 visitas
Molécula
1622 visitas
Molécula
1586 visitas
Molécula
1586 visitas
Molécula
1552 visitas
Molécula
1496 visitas
Molécula
1496 visitas
Molécula
1489 visitas
Molécula
1487 visitas
Molécula
1445 visitas
Molécula
1426 visitas
Molécula
1415 visitas
Molécula
1402 visitas
Molécula
1318 visitas
Molécula
1312 visitas
Molécula
1305 visitas
Molécula
1297 visitas
Molécula
1235 visitas
Molécula
1193 visitas
Molécula
749 visitas
Molécula
628 visitas
ilustração rodapé
Sala de Aula
10654 visitas
Sala de Aula
10345 visitas
Sala de Aula
8906 visitas
Sala de Aula
7434 visitas
Sala de Aula
7225 visitas
Sala de Aula
6839 visitas
Sala de Aula
6015 visitas
Sala de Aula
5268 visitas
Sala de Aula
5020 visitas
Sala de Aula
4397 visitas
Sala de Aula
4361 visitas
Sala de Aula
4219 visitas
Sala de Aula
3986 visitas
Sala de Aula
3980 visitas
Sala de Aula
3926 visitas
Sala de Aula
3434 visitas
Sala de Aula
3417 visitas
Sala de Aula
3387 visitas
Sala de Aula
3363 visitas
Sala de Aula
3323 visitas
Sala de Aula
3317 visitas
Sala de Aula
3226 visitas
Sala de Aula
3148 visitas
Sala de Aula
3074 visitas
Sala de Aula
3066 visitas
Sala de Aula
3021 visitas
Sala de Aula
2662 visitas
Sala de Aula
2513 visitas
Sala de Aula
2510 visitas
Sala de Aula
2247 visitas
Sala de Aula
2042 visitas
Sala de Aula
1962 visitas
ilustração rodapé
ilustração rodapé
Materiais Associados
ilustração rodapé
Laboratório de Tecnologia Educacional
Departamento de Bioquímica
Instituto de Biologia - Caixa Postal n° 6109
Universidade Estadual de Campinas - UNICAMP
CEP 13083-970, Campinas, SP, Brasil

Política de Privacidade