Idioma:
  Português  
Logotipo
Navegação
ilustração rodapé
Busca Rápida
Use palavras-chave para achar o que procura.
ilustração rodapé
Estatísticas
UO
0 usuários on-line
VO
82 visitantes on-line
VI
159.864 visitas
(Ano 2015)
ilustração rodapé
Redes Sociais
redeSocial2
redeSocial1
ilustração rodapé
RSS
RSS
ilustração rodapé
Isomeria Óptica
ImprimirImprimir ImprimirEnviar para um amigo
Compartilhe: Delicious Facebook Twitter Digg Google Technorati Live Yahoo

Fármacos e Quiralidade

Originalmente publicado em Química Nova na Escola, Cadernos Temáticos, maio 2001
Apoio: Sociedade Brasileira de Química
Edição: Leila Cardoso Teruya
Coordenação: Guilherme Andrade Marson
Introdução

Um dos assuntos mais fascinantes para um estudante ou alguém interessado na área de medicamentos é saber como uma substância química, utilizada como fármaco, exerce a sua atividade dentro do nosso corpo. A resposta a essa questão nem sempre é muito simples e envolve estudos de elevada complexidade e custo.

Entre os fármacos à venda nas farmácias do nosso país, existem alguns que apresentam uma particularidade em sua estrutura, que é de fundamental importância para a atividade biológica.

Alguns desses fármacos são quirais ou têm quiralidade, ou seja, têm em sua estrutura um ou mais átomos (na maioria das vezes carbono) que têm a sua orientação tridimensional muito bem definida. A modificação dessa orientação pode levar à diminuição do efeito biológico, à sua total supressão ou ao aparecimento de um efeito biológico adverso.

Convém deixar claro que a quiralidade não é condição para que uma substância apresente efeito farmacológico, entretanto se a estrutura tiver um centro quiral é importante saber qual a orientação espacial responsável pela atividade.

Cabe ressaltar que as legislações brasileira e mundial, na área farmacêutica, têm estabelecido limites à venda de fármacos cujas estruturas apresentem quiralidade. Nesses casos, primeiro é necessário saber qual orientação tridimensional do centro quiral é responsável pela atividade farmacológica. Esse conhecimento determinará como o fármaco deverá ser consumido pelo público.

Nesse aspecto, métodos químicos que permitam o controle da orientação tridimensional do centro quiral, no momento em que o fármaco esteja sendo produzido, são de extrema importância. É aí que a síntese assimétrica, que é a reunião de estratégias e métodos químicos que permitem efetuar o controle tridimensional de um determinado centro quiral, mostra sua importância.

Como o tema a ser tratado é de razoável complexidade, começaremos por definir alguns conceitos de estereoquímica (quiralidade, centro assimétrico, configuração absoluta). Em um segundo momento esses conceitos serão utilizados para explicar a interação de fármacos quirais com o nosso corpo (biofase). Finalmente, discutiremos as metodologias para a preparação de fármacos que têm centros quirais, que é a síntese assimétrica.

Assimetria molecular
Figura 1: Estrutura do ácido (+)-tartárico.

Figura 1: Estrutura do ácido (+)-tartárico.

Alguns seres humanos têm a capacidade de observar fatos corriqueiros e extrair deles conclusões que representam saltos gigantescos no conhecimento científico da humanidade. Uma dessas pessoas foi o cientista francês Louis Pasteur, que deu contribuições significativas em vários campos do conhecimento humano, tais como biologia, microbiologia e química.

Uma das observações feitas por Pasteur estava relacionada à forma e às propriedades ópticas de duas substâncias isoladas do tártaro que se depositava nos barris, no processo de envelhecimento do vinho. Uma dessas substâncias, conhecida como ácido tartárico (Figura 1) tinha a capacidade, quando dissolvida em água, de rodar o plano da luz polarizada para o lado direito. Por convenção, ficou conhecido como (+)-ácido tartárico.

A outra substância conhecida como ácido paratartárico ou racêmico (do latim racemus = cacho de uva), era estruturalmente idêntica ao ácido tartárico, mas não desviava o plano da luz polarizada. Pasteur notou que essa substância cristalizava quando reagia com amônia, formando cristais que eram estruturalmente diferentes um do outro (Figura 2).

Figura 2: Cristais do sal de amônia de ácido tartárico separados.

Figura 2: Cristais do sal de amônia de ácido tartárico separados.

Munido de muita paciência, de uma lupa e uma pinça, Pasteur separou os cristais um a um, e os agrupou em dois montes (Sheldon, 1993). Os cristais de um dos montes eram semelhantes aos cristais do ácido (+)-tartárico e desviavam o plano da luz polarizada para o lado direito, quando em solução. Os cristais do outro monte desviavam o plano da luz polarizada para o lado esquerdo.

O intrigante nessa observação era o fato de que as inclinações dos desvios terem exatamente o mesmo valor, só se diferenciando nas orientações. Assim, uma solução desviava o plano da luz polarizada para a direita e a outra desviava para a esquerda. Outro fato importante é que as duas substâncias tinham exatamente as mesmas propriedades físicas (ponto de fusão, ponto de ebulição etc). A única diferença entre elas era o comportamento diante de um feixe de luz polarizada.

Pasteur chamou de racemato a mistura inicial das duas substâncias em partes iguais, que não desvia o plano da luz polarizada. Essas observações estabeleceram as bases para o surgimento da moderna estereoquímica, que é a parte da química orgânica que se dedica a estudar as moléculas em três dimensões.

Figura 3: Possível arranjo tetraédrico das moléculas de carbono.

Figura 3: Possível arranjo tetraédrico das moléculas de carbono.

Tentando estabelecer uma relação entre o desvio do plano da luz polarizada e o arranjo espacial das moléculas de carbono, Pasteur sugeriu que os substituintes ao redor do átomo de carbono deveriam ter provavelmente um arranjo tetraédrico (Figura 3).

Entretanto, essa sugestão não ganhou muito crédito junto à comunidade cientifica da época, e acabou caindo no esquecimento.

Tentando solucionar essa questão, dois químicos, van’t Hoff (1874) e le Bel (1874), em trabalhos independentes, deram continuidade às idéias de outro químico, chamado Kekulé, e propuseram que os quatro substituintes do carbono se orientam no espaço, cada um ocupando um vértice de um tetraedro, com o carbono no centro. Esse arranjo permitiria a existência de moléculas que teriam como única diferença entre elas, a orientação dos seus substituintes no espaço.

Se tivéssemos ao redor do carbono quatro substituintes diferentes, entre todos os arranjos possíveis, somente dois e não mais que dois tetraedros seriam diferentes entre si. Um desses tetraedros é a imagem refletida no espelho do outro, sendo impossível fazer coincidir todos os substituintes, se uma estrutura for sobreposta à outra (Figura 4).

Figura 4: Os dois arranjos espaciais possíveis dos substituintes do ácido lático.

Figura 4: Os dois arranjos espaciais possíveis dos substituintes do ácido lático.

Na verdade, essa proposta de van’t Hoff evidenciou a existência de duas estruturas espaciais diferentes para a mesma substância. Segundo van’t Hoff, a existência de atividade óptica estava ligada à presença de um carbono assimétrico na molécula (Figura 4). A presença de quatro substituintes diferentes entre si e ligados ao carbono é condição suficiente, mas não a única, para haver assimetria em uma molécula. Dois meses mais tarde, le Bel fez propostas muito próximas daquelas feitas por van’t Hoff.

Essas reflexões e sugestões abriram o caminho para o nosso estágio atual de compreensão de como um fármaco com um carbono quiral exerce a sua ação no interior do nosso corpo.

Princípios de estereoquímica
Figura 5: A letra R e a sua imagem no espelho.

Figura 5: A letra R e a sua imagem no espelho.

A química orgânica trata da relação existente entre a estrutura molecular e as propriedades físicas de moléculas de carbono. A parte da química orgânica que trata da estrutura em três dimensões é chamada de ‘estereoquímica’. Um aspecto importante da estereoquímica é a existência do estereoisomerismo.

Estruturas isoméricas (do grego isoméres = partes iguais) que diferem entre si unicamente pelo arranjo tridimensional dos seus substituintes são chamadas de estereoisômeros.

A ocorrência de assimetria (ou simetria) é uma importante característica de figuras geométricas que têm duas ou três dimensões. Por exemplo, no alfabeto existem letras que são simétricas e outras não-simétricas em duas dimensões. Se considerarmos a letra R e a refletirmos no espelho, veremos a imagem mostrada na Figura 5.

Figura 6: Imagem especular da mão humana.

Figura 6: Imagem especular da mão humana.

Se simplesmente dobrarmos a folha de papel, será possível sobrepor a imagem especular da letra R sobre o original, ou seja, os R’s são sobreponíveis.

Vamos tentar tratar o assunto através de uma estrutura com que todos nós estamos bem familiarizados, as nossas mãos. Na Figura 6 vemos a representação da mão humana e de sua imagem especular (Kalsi, 1990).

Se prestarmos atenção na figura acima, veremos que a imagem especular da mão não pode ser sobreposta à mão original. Este é um dos exemplos mais simples de assimetria.

O que é quiralidade?
Figura 7: Representação de uma molécula quiral e outra aquiral.

Figura 7: Representação de uma molécula quiral e outra aquiral.

Quiralidade é um atributo geométrico, e diz-se que um objeto que não pode ser sobreposto à sua imagem especular é quiral, enquanto que um objeto aquiral é aquele em que a sua imagem especular pode ser sobreposta ao objeto original. Existem vários objetos quirais, tais como as mãos (ver Figura 6), conchas marinhas etc. Essa propriedade também é exibida por moléculas orgânicas (Allinger, 1983).

Uma molécula é quiral quando a sua imagem especular não puder ser sobreposta à molécula original. Se houver possibilidade de sobreposição entre uma molécula e sua imagem especular ela é aquiral (Figura 7).

Um centro assimétrico é aquele no qual os substituintes ligados a ele são diferentes entre si (Figura 8). Uma outra forma de representação que vale a pena ressaltar é a B, mostrada na Figura 8. Se imaginarmos um plano que contém os grupamentos CH3 e H, a linha cheia indica que o grupamento CO2H está na frente do plano e a linha tracejada indica que o grupamento Cl está na parte de trás desse plano imaginário.

Figura 8: Representações de um centro assimétrico.

Figura 8: Representações de um centro assimétrico.

Enantiômeros
Figura 9: Enantiômeros de uma molécula orgânica.

Figura 9: Enantiômeros de uma molécula orgânica.

O tipo mais comum de uma molécula quiral contém um carbono tetraédrico, no qual estão ligados quatro diferentes grupamentos. O átomo de carbono é o centro estereogênico ou assimétrico da molécula. Uma molécula desse tipo pode existir em dois arranjos espaciais diferentes, que são estereoisômeros um do outro. As duas estruturas, entretanto, não podem ser sobrepostas, já que uma é a imagem especular da outra. Esses tipos de estereoisômeros são chamados de enantiômeros (do grego, enantio = opostos) (Figura 9).

A única diferença que esses enantiômeros apresentam é a propriedade de desviar o plano da luz polarizada, quando uma solução de cada um deles é submetida a um equipamento chamado polarímetro. Todas as demais propriedades físicas são iguais.

Atividade óptica

Uma onda de luz viaja no espaço vibrando em vários planos; quando um feixe de luz é submetido a um cristal especial, existente no polarímetro, ela passa a vibrar em um único plano. Quando uma solução contendo um enantiômero é submetida a esse equipamento, ela pode desviar o plano para a direita ou para a esquerda (Figura 10).

Se o plano é desviado para a esquerda, diz-se que a substância é levorrotatória ou levógira (latim laevu = esquerda). Se o plano for desviado para a direita, diz-se que a substância é dextrorrotatória ou dextrógira (latim dextro = direita). Essa propriedade dos enantiômeros é conhecida como rotação óptica.

Por convenção, coloca-se um sinal de menos entre parênteses (-), para nomear uma substância levorrotatória e um sinal de mais (+), para designar uma substância dextrorrotatória.

Figura 10: a. polarização da onda de luz em um polarímetro; b. desvio do plano da luz polarizada ocasionado por um enantiômero.

Figura 10: a. polarização da onda de luz em um polarímetro; b. desvio do plano da luz polarizada ocasionado por um enantiômero.

Diasteroisômeros

Para substâncias que têm mais de um carbono assimétrico, é possível formar mais do que dois estereoisômeros (Figura 11).

Quando adicionamos um segundo centro assimétrico a uma molécula, os grupamentos se orientam no espaço, levando à formação de 2 pares de isômeros diferentes. Se tivermos n centros assimétricos teremos 2n isômeros possíveis. Enantiômeros existem todo o tempo em pares e alguns dos estereoisômeros, formados com a inclusão de centros assimétricos, não são imagens especulares dos outros. Isômeros que não são imagens especulares uns dos outros são chamados de diastereoisômeros. Se prestarmos atenção à Figura 11, veremos que nos diastereoisômeros houve modificação da orientação espacial em apenas um dos carbonos assimétricos. Nos enantiômeros os dois centros mudam, ao mesmo tempo, de orientação.

Figura 11: Isômeros formados com a inclusão de um segundo centro assimétrico.

Figura 11: Isômeros formados com a inclusão de um segundo centro assimétrico.

Como devemos fazer para escrever a orientação espacial correta de estereoisômeros?

Para podermos desenhar e reconhecer de forma correta a maneira como os substituintes de um carbono assimétrico orientam-se no espaço, precisamos de uma notação fácil e que possa ser reconhecida em qualquer lugar do mundo. Essa notação foi proposta por Cahn, Ingold e Prelog e é conhecida como notação R e S (Allinger, 1983).

Esses pesquisadores estabeleceram uma regra de prioridade entre diferentes substituintes ligados ao carbono assimétrico. A regra baseia-se no peso molecular dos átomos ligados ao carbono estereogênico. Assim, um heteroátomo (por exemplo, I > Br > Cl > S > O > N) tem maior prioridade do que o carbono. Uma ligação dupla (-CH=CH2) tem uma prioridade maior do que uma ligação simples (-CH2-CH2-). Os princípios básicos dessa regra são exemplificados na molécula do aminoácido fenilglicina (Figura 12).

Se tivermos mais de um centro quiral na molécula, esse procedimento deve ser repetido para cada um separadamente. Convém ressaltar que essa notação não está diretamente relacionada com o desvio do plano da luz polarizada, que deve ser medida no polarímetro. Ela é utilizada para determinar, sem nenhuma ambigüidade, como os substituintes estão orientados no espaço, ao redor do carbono assimétrico. Portanto, uma substância pode ser R e desviar o plano da luz polarizada para a esquerda, escreve-se então (-)-(R)-, ou desviar o plano para a direita e ter a configuração absoluta S, escreve-se (+)-(S)-.

Como todas essas regras e conhecimentos estão relacionados à atividade farmacológica?

Figura 12: Aplicação da regra R e S de Cahn-Ingold-Prelog.

Figura 12: Aplicação da regra R e S de Cahn-Ingold-Prelog.

Quiralidade e atividade biológica

Existe nas farmácias da sua cidade uma série de substâncias, utilizadas como fármacos, que apresentam em sua estrutura um carbono assimétrico. A supressão da quiralidade nesses fármacos leva ao desaparecimento da atividade biológica. Por outro lado, a inversão da orientação dos grupamentos no centro assimétrico pode levar a uma modificação importante da atividade biológica. Nesse caso, a regra R e S é importante, pois permite determinar qual é o arranjo espacial correto para cada estereoisômero do fármaco separado. Se soubermos disso e associarmos ao efeito biológico, será possível saber qual é a configuração absoluta do estereoisômero que tem atividade farmacológica. Na Tabela 1 apresentamos alguns exemplos disso.

Na Tabela 1 apresentamos alguns exemplos de substâncias vendidas nas farmácias como fármacos. Todos apresentam em sua estrutura um ou mais centros assimétricos. Como podemos perceber, a modificação da orientação espacial dos substituintes ao redor do centro assimétrico muda completamente o efeito biológico no nosso corpo.

Por exemplo, a talidomida é um sedativo leve e pode ser utilizado no tratamento de náuseas, muito comum no período inicial da gravidez. Quando foi lançado era considerado seguro para o uso de grávidas, sendo administrado como uma mistura racêmica, ou seja, uma mistura composta pelos seus dois enantiômeros, em partes iguais.

Entretanto, uma coisa que não se sabia na época é que o enantiômero S apresentava uma atividade teratogênica (do grego terás = monstro; gene = origem), ou seja, levava à má formação congênita, afetando principalmente o desenvolvimento normal dos braços e pernas do bebê. O uso indiscriminado desse fármaco levou ao nascimento de milhares de pessoas com gravíssimos defeitos físicos (Figura 13) (Para maiores informações, veja http://www.thalidomide.org/FfdN/english/eindex.html).

Esse é um exemplo clássico de um efeito nocivo grave causado pelo enantiômero de um fármaco comercial. Esse lamentável acontecimento despertou a atenção da comunidade científica e das autoridades farmacêuticas sobre a importância de um centro assimétrico na atividade farmacológica.

Um outro exemplo é o aspartame, adoçante sintético, com uso largamente difundido no Brasil e no mundo. O estereoisômero S,S é doce, enquanto que o R,R é amargo.

Figura 13: Anomalias de formação causadas pelo enantiômero S da talidomida.

Figura 13: Anomalias de formação causadas pelo enantiômero S da talidomida.

Como podemos explicar esses fatos?

Um fármaco pode exercer a sua atividade no interior do nosso corpo (biofase) de várias formas. Uma dessas formas é através da interação com estruturas chamadas receptores, que são proteínas de elevado grau de organização espacial, que se encontram na membrana da célula. Esses receptores agem como pequenos interruptores de grande seletividade. Uma vez ligados, eles podem desencadear uma série de reações intracelulares para dar origem a um efeito biológico. Um fármaco também pode interagir com uma enzima, que é uma proteína de elevado nível de organização.

Se essas estruturas têm quiralidade, podemos sugerir que para ter interação com elas, o fármaco deve ter um arranjo espacial de sua estrutura muito bem definido. Esse arranjo deve coincidir com aquele da estrutura com a qual ele irá interagir.

Na literatura especializada existem alguns modelos que permitem explicar essa interação. Um desses modelos está mostrado esquematicamente na Figura 14 (Easson e Stedman, 1933).

Figura 14: Modelo para explicar a interação biológica.

Figura 14: Modelo para explicar a interação biológica.

O modelo mostra duas possibilidades de arranjo espacial de grupos hipotéticos. Em um arranjo, a interação do fármaco pode ocorrer, no outro ela só ocorre parcialmente.

Por exemplo, a noradrenalina é um hormônio liberado pelo organismo humano quando precisamos de uma dose de energia imediata. É o hormônio lute ou fuja, liberado em situações em que você precisa de maior atenção. Por exemplo, quando toma-se um susto brutal e o coração bate mais rápido, ou quando vai-se brigar com alguém ou então vai-se fugir da briga. Esse hormônio apresenta na sua estrutura um centro assimétrico, de configuração absoluta R (Figura 15).

Figura 15: Aplicação do modelo à noradrenalina.

Figura 15: Aplicação do modelo à noradrenalina.

Se invertermos o arranjo espacial (configuração absoluta) do centro assimétrico presente na adrenalina, impediremos que ocorra uma das interações, levando a uma modificação do efeito biológico.

Uma outra possibilidade de ação é através de uma interação com enzimas do nosso corpo. As enzimas, da mesma forma que os receptores das membranas celulares, são proteínas e têm um arranjo espacial bem organizado e definido. Para que a enzima possa estabelecer ligações adequadas com um fármaco, este tem que apresentar um arranjo espacial específico.

Esses modelos de interação permitem estabelecer a importância da quiralidade para a atividade biológica. Qualquer mudança de orientação espacial do carbono assimétrico leva, na quase totalidade dos casos, a uma alteração no meio biológico.

Na figura abaixo mostramos uma alusão que resume a importância que a quiralidade pode ter para o efeito biológico. Não adianta tentarmos usar a luva esquerda na imagem especular da mão. Elas não se encaixam. O mesmo ocorre com a interação de um fármaco que tem um carbono assimétrico em sua estrutura (Figura 16).

O controle da estereoquímica absoluta do centro assimétrico presente em um fármaco pode ser realizado na sua fabricação. Existem vários métodos químicos que permitem a realização dessa importante tarefa. Esses métodos constituem a base da síntese assimétrica.

Figura 16: Alusão à interação do fármaco quiral com o nosso corpo.

Figura 16: Alusão à interação do fármaco quiral com o nosso corpo.

Síntese orgânica

A síntese orgânica aplica os conhecimentos da química orgânica, visando, entre outras coisas, a preparação de novas moléculas ou de moléculas já conhecidas. Ela permite a preparação, em uma fábrica, das substâncias que são utilizadas como fármacos. O enorme desenvolvimento dessa área do conhecimento, nos últimos vinte anos, possibilitou um grande avanço da química, principalmente na preparação de fármacos.

Uma síntese orgânica de moléculas que contêm centros assimétricos pode ser classificada como racêmica ou assimétrica. O produto de uma síntese racêmica será um fármaco composto de uma mistura de seus possíveis estereoisômeros em partes iguais. Por outro lado, o produto de uma síntese assimétrica será um fármaco de elevada pureza óptica, ou seja, se estiver contaminado com o outro estereoisômero será em quantidades inferiores a 5%.

No mercado mundial existem vários fármacos que já são vendidos nas farmácias em suas formas opticamente puras, ou seja, sem a mistura com o outro isômero. Na Tabela 2 mostramos alguns exemplos.

A venda de fármacos na forma de mistura racêmica ainda ocorre. Entretanto, é necessário saber qual é o estereoisômero responsável pela atividade e ter absoluta certeza que o estereoisômero inativo, presente na mistura, não tem nenhuma atividade biológica adversa.

Do ponto de vista do consumidor, a administração de um fármaco em sua mistura racêmica tem algumas desvantagens:

1. A dose a ser utilizada deve ser aumentada, pois somente metade dela tem o efeito farmacológico desejado;

2. O paciente ingere, a cada dose do fármaco, 50% de uma substância química desnecessária.

O único fator, no nosso entender, que dificulta a venda de fármacos quirais em sua forma opticamente pura é o custo de uma síntese assimétrica. Normalmente, os métodos usados são caros, o que eleva o preço final do fármaco para o consumidor. Entretanto, esse fator limitante tende a desaparecer, principalmente devido às exigências legais.

Uma síntese assimétrica, por sua vez, pode ser enantiosseletiva ou diastereosseletiva. No primeiro caso é formado, com grande preferência, um dos possíveis enantiômeros de um fármaco. Uma síntese diastereosseletiva formará preferencialmente um dos diastereoisômeros de um fármaco (Esquema 1).

Esquema 1: Tipos de síntese orgânica.

Esquema 1: Tipos de síntese orgânica.

Conclusão

A presença de centros assimétricos em alguns fármacos à venda nas farmácias está relacionada à sua atividade farmacológica. Qualquer alteração na orientação espacial desses centros pode conduzir à total inativação do fármaco, à diminuição do efeito biológico ou então ao aparecimento de um efeito contrário, que pode ser extremamente danoso para a saúde dos consumidores.

Fármacos quirais necessitam de cuidados especiais por parte das autoridades farmacêuticas, no sentido de garantir que somente aquele estereoisômero responsável pela atividade seja vendido nas farmácias.

Devido aos métodos que são utilizados na sua fabricação, o custo final desse tipo de fármaco para o consumidor ainda é elevado. Entretanto, devido às exigências legais esse custo deve cair ao longo do tempo, principalmente se levarmos em consideração que o constante aprimoramento da pesquisa em síntese orgânica deve levar ao desenvolvimento de novos, mais baratos e mais eficientes métodos de fabricação.

Nota

O artigo original apresenta os métodos de preparação dos fármacos Ibuprofeno (Motrin®, Algifen®) e Captopril (Capoten®).

  • Referências
    1. ALLINGER, N.D. Química orgânica, 3 ed. Rio de Janeiro: Editora Guanabara Dois, capítulo 6, 1983.
    2. ALPER, H e HAMEL, N. J. Am. Chem. Soc., v. 109, p. 7122-7127, 1990.
    3. BASILE, A.C. e ZANINI, A.C. Dicionário de medicamentos genéricos Zanini-Oga, 2 ed. São Paulo: Ipex Comercial Editora, 1999.
    4. EASSON, L.H. e STEDMAN, E. Biochem. J., v. 27, p. 1257-1266, 1933.
    5. KALSI, P.S. Stereochemistry – Conformation and mechanism. Nova Deli: John Wiley & Sons: capítulo 1, 1990.
    6. LE BEL, J.A. Bull. Soc. Chim. Fr., v. 22, p. 337-347, 1874.
    7. LEDNICER, D. Strategies for organic drug synthesis and design. Nova Iorque: John Wiley & Sons, p. 53-57, 1998.
    8. SHELDON, R.A. Chirotechnology – Industrial synthesis of optically active compounds. Nova Iorque: Marcel Dekker Inc., p. 1-71, 1993.
    9. SHIMAKAZI, M.; HASEGAWA, J.; KAN, K.; NOMURA, K.; NOSE, Y.; KONDO, H.; OHASHI, T. e WATANABE, K. Chem. Pharm. Bull., v. 30, p. 3139-3146, 1982.
    10. VAN’T Hoff, J.H. Arch. Neerl. Sci. Exacts Nat., v. 9, p. 445-454, 1874.
ImprimirImprimir ImprimirEnviar para um amigo
Compartilhe: Delicious Facebook Twitter Digg Google Technorati Live Yahoo
Login
ilustração rodapé
Tema
97628 visitas
Tema
55835 visitas
Tema
50523 visitas
Tema
44350 visitas
Tema
32085 visitas
Tema
31521 visitas
Tema
30794 visitas
Tema
29113 visitas
Tema
23368 visitas
Tema
21148 visitas
Tema
21073 visitas
Tema
20517 visitas
Tema
19868 visitas
Tema
19798 visitas
Tema
19571 visitas
Tema
18823 visitas
Tema
16469 visitas
Tema
16104 visitas
Tema
13648 visitas
Tema
12802 visitas
Tema
10714 visitas
Tema
10376 visitas
Tema
8721 visitas
Tema
8600 visitas
Tema
8446 visitas
Tema
7868 visitas
Tema
4133 visitas
Tema
3694 visitas
Tema
3470 visitas
Tema
3105 visitas
Tema
2493 visitas
Tema
1991 visitas
Tema
1747 visitas
ilustração rodapé
Conceito
78321 visitas
Conceito
69835 visitas
Conceito
51889 visitas
Conceito
50525 visitas
Conceito
47144 visitas
Conceito
37684 visitas
Conceito
36158 visitas
Conceito
34220 visitas
Conceito
29752 visitas
Conceito
27236 visitas
Conceito
25307 visitas
Conceito
23975 visitas
Conceito
17134 visitas
Conceito
17000 visitas
Conceito
16299 visitas
Conceito
16102 visitas
Conceito
16058 visitas
Conceito
15254 visitas
Conceito
14902 visitas
Conceito
13984 visitas
Conceito
13612 visitas
Conceito
13001 visitas
Conceito
12536 visitas
Conceito
10639 visitas
Conceito
10181 visitas
Conceito
8592 visitas
Conceito
7632 visitas
Conceito
6323 visitas
Conceito
5160 visitas
Conceito
4185 visitas
Conceito
3933 visitas
Conceito
3141 visitas
ilustração rodapé
Molécula
8759 visitas
Molécula
7831 visitas
Molécula
6541 visitas
Molécula
6345 visitas
Molécula
5857 visitas
Molécula
5431 visitas
Molécula
5400 visitas
Molécula
4738 visitas
Molécula
4673 visitas
Molécula
4607 visitas
Molécula
4268 visitas
Molécula
4250 visitas
Molécula
4143 visitas
Molécula
4112 visitas
Molécula
4049 visitas
Molécula
3932 visitas
Molécula
3925 visitas
Molécula
3899 visitas
Molécula
3820 visitas
Molécula
3762 visitas
Molécula
3743 visitas
Molécula
3702 visitas
Molécula
3630 visitas
Molécula
3459 visitas
Molécula
3457 visitas
Molécula
3386 visitas
Molécula
3378 visitas
Molécula
3273 visitas
Molécula
3267 visitas
Molécula
3225 visitas
Molécula
3218 visitas
Molécula
3203 visitas
Molécula
3162 visitas
Molécula
3078 visitas
Molécula
3062 visitas
Molécula
3053 visitas
Molécula
3018 visitas
Molécula
3009 visitas
Molécula
2913 visitas
Molécula
2898 visitas
Molécula
2876 visitas
Molécula
2873 visitas
Molécula
2842 visitas
Molécula
2768 visitas
Molécula
2718 visitas
Molécula
2707 visitas
Molécula
2702 visitas
Molécula
2671 visitas
Molécula
2641 visitas
Molécula
2593 visitas
Molécula
2574 visitas
Molécula
2569 visitas
Molécula
2551 visitas
Molécula
2544 visitas
Molécula
2539 visitas
Molécula
2506 visitas
Molécula
2433 visitas
Molécula
2418 visitas
Molécula
2413 visitas
Molécula
2409 visitas
Molécula
2328 visitas
Molécula
2313 visitas
Molécula
2298 visitas
Molécula
2257 visitas
Molécula
2230 visitas
Molécula
2216 visitas
Molécula
2183 visitas
Molécula
2180 visitas
Molécula
2178 visitas
Molécula
2156 visitas
Molécula
2148 visitas
Molécula
2148 visitas
Molécula
2141 visitas
Molécula
2119 visitas
Molécula
2078 visitas
Molécula
2078 visitas
Molécula
2072 visitas
Molécula
2064 visitas
Molécula
2024 visitas
Molécula
2006 visitas
Molécula
2002 visitas
Molécula
1994 visitas
Molécula
1970 visitas
Molécula
1960 visitas
Molécula
1943 visitas
Molécula
1933 visitas
Molécula
1928 visitas
Molécula
1915 visitas
Molécula
1910 visitas
Molécula
1896 visitas
Molécula
1887 visitas
Molécula
1863 visitas
Molécula
1854 visitas
Molécula
1817 visitas
Molécula
1769 visitas
Molécula
1735 visitas
Molécula
1719 visitas
Molécula
1712 visitas
Molécula
1705 visitas
Molécula
1684 visitas
Molécula
1676 visitas
Molécula
1675 visitas
Molécula
1649 visitas
Molécula
1568 visitas
Molécula
1567 visitas
Molécula
1560 visitas
Molécula
1559 visitas
Molécula
1544 visitas
Molécula
1522 visitas
Molécula
1511 visitas
Molécula
1474 visitas
Molécula
1444 visitas
Molécula
1370 visitas
Molécula
1354 visitas
Molécula
1349 visitas
Molécula
1297 visitas
Molécula
1240 visitas
Molécula
770 visitas
Molécula
643 visitas
ilustração rodapé
Sala de Aula
10950 visitas
Sala de Aula
10441 visitas
Sala de Aula
9209 visitas
Sala de Aula
7648 visitas
Sala de Aula
7441 visitas
Sala de Aula
7132 visitas
Sala de Aula
6174 visitas
Sala de Aula
5883 visitas
Sala de Aula
5347 visitas
Sala de Aula
4765 visitas
Sala de Aula
4616 visitas
Sala de Aula
4453 visitas
Sala de Aula
4399 visitas
Sala de Aula
4197 visitas
Sala de Aula
4173 visitas
Sala de Aula
4017 visitas
Sala de Aula
3572 visitas
Sala de Aula
3568 visitas
Sala de Aula
3555 visitas
Sala de Aula
3456 visitas
Sala de Aula
3449 visitas
Sala de Aula
3343 visitas
Sala de Aula
3315 visitas
Sala de Aula
3242 visitas
Sala de Aula
3175 visitas
Sala de Aula
3118 visitas
Sala de Aula
2840 visitas
Sala de Aula
2668 visitas
Sala de Aula
2603 visitas
Sala de Aula
2358 visitas
Sala de Aula
2184 visitas
Sala de Aula
2040 visitas
Sala de Aula
1005 visitas
ilustração rodapé
ilustração rodapé
Materiais Associados
ilustração rodapé
Laboratório de Tecnologia Educacional
Departamento de Bioquímica
Instituto de Biologia - Caixa Postal n° 6109
Universidade Estadual de Campinas - UNICAMP
CEP 13083-970, Campinas, SP, Brasil

Política de Privacidade