Idioma:
  Português  
Logotipo
Navegação
ilustração rodapé
Busca Rápida
Use palavras-chave para achar o que procura.
ilustração rodapé
Estatísticas
UO
0 usuários on-line
VO
94 visitantes on-line
VI
2.244.725 visitas
(Ano 2014)
ilustração rodapé
Redes Sociais
redeSocial2
redeSocial1
ilustração rodapé
RSS
RSS
ilustração rodapé
Solução Tampão e pH
ImprimirImprimir ImprimirEnviar para um amigo
Compartilhe: Delicious Facebook Twitter Digg Google Technorati Live Yahoo

O Conceito de Solução Tampão

Originalmente publicado em Química Nova na Escola, n. 13, maio 2001
Apoio: Sociedade Brasileira de Química
Edição: Leila Cardoso Teruya
Coordenação: Guilherme Andrade Marson
Histórico

O conceito original de ação tamponante surgiu de estudos bioquímicos e da necessidade do controle do pH em diversos aspectos da pesquisa biológica, como por exemplo em estudos com enzimas que têm sua atividade catalítica muito sensível a variações de pH. Neste contexto, em 1900, Fernbach e Hubert, em seus estudos com a enzima amilase, descobriram que uma solução de ácido fosfórico parcialmente neutralizado agia como uma “proteção contra mudanças abruptas na acidez e alcalinidade”. Esta resistência à mudança na concentração hidrogeniônica livre de uma solução foi então descrita por estes pesquisadores como “ação tamponante” (do inglês buffering). Seguindo esta constatação, em 1904, Fels mostrou que o uso de misturas de ácidos fracos com seus sais (ou de bases fracas com seus sais) permitia a obtenção de soluções cuja acidez (ou basicidade) não era alterada pela presença de traços de impurezas ácidas ou básicas na água ou nos sais utilizados na sua preparação, em decorrência de dificuldades experimentais tais como a ausência de reagentes e de água com elevado grau de pureza.

O conceito de pH foi introduzido por Sørensen em 1909, com o intuito de quantificar os valores de acidez e basicidade de uma solução. Ainda neste ano, Henderson apontou o papel fundamental do íon bicarbonato (monoidrogenocarbonato, segundo a IUPAC) na manutenção da concentração hidrogeniônica do sangue, a qual podia ser definida pela equação:

[H+] = K [H2CO3]/[HCO3] (1)

onde K é a constante de equilíbrio da reação da primeira ionização do ácido carbônico (H2CO3). Esta constante K é a constante de equilíbrio químico a uma dada temperatura e fornece uma maneira de descrever quantitativamente os equilíbrios. K representa o quociente dos diferentes valores de concentração das espécies, o qual tem um valor, constante no equilíbrio, independente da concentração das espécies, mas dependente da temperatura. Esta constante para a temperatura corporal (37 °C) é diferente da padrão, para 25 °C, geralmente tabelada.

Segundo estes estudos, a um acréscimo de ácido carbônico (ou outros ácidos, como o lático) na circulação, segue-se uma diminuição do pH sangüíneo, a menos que ocorra uma elevação proporcional de bicarbonato, de modo a manter constante a razão [H2CO3]/[HCO3].


Em 1916, Hasselbach colocou em forma logarítmica a equação de Henderson, simplificando a sua aplicabilidade na área clínica:


pH = pK + log ([HCO3]/[H2CO3]) (2)


Tampões de ocorrência natural e industrial: contextualização

Quase todos os processos biológicos são dependentes do pH; uma pequena variação na acidez produz uma grande variação na velocidade da maioria destes processos.

O pH do sangue de mamíferos é um reflexo do estado do balanço ácido-base do corpo. Em condições normais, o pH é mantido entre 7,35 e 7,45 devido a uma série de mecanismos complexos que compreendem produção, tamponamento e eliminação de ácidos pelo corpo (Perrin e Dempsey, 1974). Um papel importante neste equilíbrio é desempenhado por sistemas inorgânicos, tais como H2PO4/HPO42–, CO2/H2CO3/ HCO3, e grupos orgânicos ácidos e básicos, principalmente de proteínas. Uma diminuição (acidose) ou aumento (alcalose) do pH do sangue pode causar sérios problemas e até mesmo ser fatal. A acidose metabólica é a forma mais freqüentemente observada entre os distúrbios do equilíbrio ácido-base. Pode ser causada por diabetes grave, insuficiência renal, perda de bicarbonato por diarréia e hipoxia ou isquemia, durante, por exemplo, exercício físico intenso. Uma compensação natural da acidose metabólica pelo corpo é o aumento da taxa de respiração, fazendo com que mais CO2 seja expirado.

Tecidos vivos de plantas também são tamponados, embora menos intensamente. O pH normal em tecidos vegetais varia entre 4,0 e 6,2. Nestes tecidos, os principais tampões são fosfatos, carbonatos e ácidos orgânicos, como o málico, cítrico, oxálico, tartárico e alguns aminoácidos.

Dentre os fluidos biológicos, a saliva também constitui uma solução tampão, com a função de neutralizar os ácidos presentes na boca, evitando o desenvolvimento de bactérias que formam a placa bacteriana. O pH normal da saliva varia entre 6,4 e 6,9 no intervalo entre as refeições e de 7,0 a 7,3 enquanto comemos.

A capacidade tamponante em sistemas biogeoquímicos pode ser fator decisivo em impactos ambientais. Um estudo interessante sobre o impacto da chuva ácida sobre lagos da região das Montanhas Adirondack, área de Nova Iorque, revelou que lagos sobre áreas ricas em calcário são menos suscetíveis a acidificação devido à considerável capacidade tamponante das águas destes lagos (Skoog et al., 1996; Wright e Gjessing, 1976). O carbonato de cálcio presente no solo destas regiões reage com os íons hidrônio presentes na água, provenientes em grande parte da chuva ácida:

CaCO3(s) + H3O+(aq) → Ca2+(aq) + HCO3 -(aq) + H2O(l) (3)


levando à formação de um sistema tampão HCO3 -/H2CO3/CO2.


O solo também age como um tampão e resiste às mudanças em pH, mas a sua capacidade tamponante depende do seu tipo. Tal propriedade advém da capacidade de trocar cátions com o meio. Esta troca é o mecanismo pelo qual K+, Ca2+, Mg2+ e metais essenciais, a níveis de traço, são disponibilizados às plantas. O processo de absorção de íons metálicos do solo pelas raízes das plantas e sua conseqüente troca por íons H+, aliado à lixiviação de cálcio, magnésio e outros íons do solo por água contendo ácido carbônico, tende a tornar ácido o solo (Manahan, 1994):


Ca2+ + 2CO2 + 2H2O → (H+)2 + Ca2+(raiz) + 2HCO3 - (4)


O balanço de H+ no solo (produção através das raízes contra o consumo pelo intemperismo) é delicado e pode ser afetado pela deposição ácida. Se a taxa de intemperismo iguala-se ou excede a taxa de liberação de H+ pelas plantas, como seria o caso de um solo calcáreo, o solo manterá um tampão em cátions básicos (Ca2+, K+, NH4+, Al3+) e alcalinidade residual (HCO3 -, H2PO4 etc.). Por outro lado, em solos “ácidos”, a taxa de liberação de H+ pelas plantas pode exceder a taxa de consumo de H+ pelo intemperismo e causar uma acidificação progressiva do solo (Stumm, 1992; Stumm e Schnoor, 1995).

Na indústria de alimentos, alguns ácidos e bases (ácido cítrico, ácido adípico, bicarbonato de sódio, ácido lático, tartarato ácido de potássio, ácido fosfórico) são usados como agentes de processamento para o controle da acidez e alcalinidade de muitos produtos alimentícios. Dependendo da quantidade desses aditivos e da acidez ou alcalinidade do alimento antes da adição destes compostos, pode ocorrer a formação de sistemas tampões ou estes simplesmente funcionam como agentes neutralizantes. Estes tipos de aditivos são usados em gelatinas, fermento, processamento de queijo e em bebidas refrigerantes (Snyder, 1995).

Em alguns casos, a própria solução tampão (ácido lático/lactato de sódio) é adicionada ao alimento, com a função de agente conservante, evitando a deterioração por bactérias e outros microrganismos (Zeitoun e Debevere, 1992). Neste caso, as substâncias do tampão são utilizadas como agentes antimicrobiais mantendo o alimento com o pH baixo e conseqüentemente evitando o desenvolvimento de microrganismos, como fungos e bactérias.

Solução tampão: definição contemporânea

Hoje, o conceito de tampão é aplicado nas diversas áreas do conhecimento. Bioquímicos utilizam tampões devido às propriedades de qualquer sistema biológico ser dependente do pH; além disso, em química analítica e industrial, o controle adequado do pH pode ser essencial na determinação das extensões de reações de precipitação e de eletrodeposição de metais, na efetividade de separações químicas, nas sínteses químicas em geral e no controle de mecanismos de oxidação e reações eletródicas.

Uma definição mais abrangente foi apresentada, recentemente, por Harris (1999): uma solução tamponada resiste a mudanças de pH quando ácidos ou bases são adicionados ou quando uma diluição ocorre.

Embora haja outros tipos de solução tampão, estas soluções são constituídas geralmente de uma mistura de um ácido fraco e sua base conjugada (exemplo: ácido acético e acetato de sódio), ou da mistura de uma base fraca e seu ácido conjugado (exemplo: amônia e cloreto de amônio).

Solução tampão: equilíbrio químico e princípio de Le Chatelier

Uma solução tampão pode ser preparada misturando-se uma solução de ácido fraco com uma solução do seu sal (base conjugada). Analisemos o que ocorre, em termos de equilíbrio químico, após esta mistura. Quando misturamos A mols de ácido fraco (ou de base fraca) com B mols de sua base conjugada (ou de ácido conjugado), a quantidade de matéria do ácido (ou base) permanecerá, no equilíbrio químico, próximo de A e a quantidade de matéria da base conjugada (ou ácido conjugado) próximo de B.

Para entender porque isto ocorre desta forma, analisemos como exemplo as reações de ionização de um ácido fraco e de hidrólise de sua base conjugada em termos do princípio de Le Chatelier.

Consideremos um ácido fraco (ex.: ácido acético, HAc, com Ka = 1,74 x 10-5) e sua base conjugada (ex.: íon acetato, Ac com Kh = Kb = Kw/Ka = 5,75 x 10–10). O baixo valor de Ka equivale a dizer que quando se prepara uma solução 02 mol L–1 de ácido acético a 25 °C, para cada 1000 moléculas de ácido acético, apenas 9 estão ionizadas de acordo com a reação abaixo:

HAc(aq) + H2O(l) H3O+(aq) + Ac(aq) (5)

Ka = 1,74 x 10–5


Portanto, o ácido acético ioniza-se muito pouco, e a adição de um sal de acetato à solução fará com que a ionização do ácido acético seja ainda menor, devido ao efeito do íon comum (acetato), que deslocará o equilíbrio de dissociação do ácido acético no sentido de formação do mesmo, e não da ionização. O mesmo raciocínio pode ser aplicado para o íon acetato (Ac), quando se prepara uma solução 010 mol L-1 destes íons. Nestas condições, devido ao baixo valor de sua constante de hidrólise (Kh), a solução apresenta 75 ânions Ac- hidrolisados para cada 10000 ânions Ac- em solução, a 25 °C, de acordo com a reação:

Ac(aq) + H2O(l) HAc(aq) + OH(aq) (6)

Ka=5,75 x 10–10

Similarmente, o íon acetato reage muito pouco com a água e a adição de ácido acético fará com que o acetato reaja ainda menos devido ao deslocamento da reação de hidrólise no sentido de formação do acetato, ou seja, reprimindo a hidrólise.

Portanto, se por exemplo 010 mol de acetato de sódio + 02 mol de ácido acético forem dissolvidos em 1 L de água, a solução resultante apresentará aproximadamente uma concentração de 010 mol L–1 de acetato de sódio e 02 mol L–1 de ácido acético em equilíbrio químico na solução.

pH de uma solução tampão

O pH de uma solução tampão pode ser estimado pela equação de Henderson-Hasselbalch, que é uma forma rearranjada da expressão de equilíbrio de ionização de um ácido fraco (HA) ou de hidrólise de um ácido conjugado (BH+) de uma base fraca (B). Respectivamente, representamos os equilíbrios químicos destas soluções tampão pelas equações químicas:

HA(aq) + H2O(l) H3O+(aq) + A(aq) (7)

BH+(aq) + H2O(l) H3O+(aq) + B(aq) (8)

E pelas suas respectivas constantes de equilíbrio:

Rearranjando as expressões anteriores, temos as concentrações hidrogeniônicas definidas como:

Aplicando o logaritmo negativo em ambos os lados, temos:

Aplicando a definição de pH, obtemos finalmente a equação de Henderson-Hasselbalch para os dois tipos de soluções tampão:

Estas expressões fornecem o pH de uma solução tampão, sabendo-se a razão entre as concentrações da espécie ácida (ácido fraco, HA, ou ácido conjugado de uma base fraca, BH+) e da espécie básica (base conjugada de um ácido fraco, A, ou base fraca, B).

Pode-se estimar, por exemplo, o pH do sangue em uma situação de acidose respiratória descompensada, através das concentrações em equilíbrio, de HCO3 e H2CO3 (resultante da associação de gás carbônico e água em plasma sangüíneo). Nestas condições, o plasma sangüíneo apresenta 0027 mol L–1 de HCO3 e 00025 mol L–1 de H2CO3 (DEF, 2000/2001). Aplicandose estes valores na equação:

teremos que a espécie básica, representada por A corresponde neste caso ao íon HCO3 e a espécie ácida representada por HA refere-se ao H2CO3. Uma vez que o valor de Ka (constante de dissociação do ácido) é de 4,45 x 10-7, pKa = -log Ka = 6,10, à temperatura corporal. Finalmente, substituindo-se os valores citados na equação apresentada, teremos que o pH do sangue no caso apresentado é 7,13, típico caso de acidose.

É importante enfatizar que no caso da ionização da espécie ácida (HA ou HB+), pKa = -log Ka, e no caso do ácido conjugado de base fraca (HB+), Ka = Kw/Kb; conseqüentemente, pKa = pKw - pKb, e Kb refere-se à ionização de uma base fraca B. Assim, para um tampão NH3/NH4Cl, a espécie básica representada por B corresponde à NH3 e seu ácido conjugado representado por BH+ corresponde ao cátion NH4+ oriundo do sal de cloreto. Sabendo-se que o pKb da base NH3 é igual a 4,76, podemos concluir que o pKa do seu ácido conjugado NH4+ é igual a pKw - pKb, que a 25 °C equivale a 14,00 - 4,76 = 9,24.

Considerando uma solução tampão NH3 /NH4Cl, em que ambas as espécies têm concentração de 010 mol L–1, pode-se calcular o pH desta solução de acordo com a equação abaixo:

Lembrando-se que [B] = [NH3] = 010 mol L–1, que [BH+] = [NH4+] = 010 mol L–1, e que pKa do íon amônio é 9,24, como obtido anteriormente, teremos o valor de pH desta solução tampão: pH = 9,24 + log 1 = 9,24.

Verifica-se que quando a razão entre as espécies básica e ácida é igual a 1, o pH da solução tampão é idêntico ao pKa, e quando a razão é menor ou maior que 1, o pH é, respectivamente, menor ou maior que o pKa.

A capacidade de uma solução tamponante

A capacidade tamponante de uma solução tampão é, qualitativamente, a habilidade desta solução de resistir a mudanças de pH frente a adições de um ácido ou de uma base. Quantitativamente, a capacidade tampão de uma solução é definida como a quantidade de matéria de um ácido forte ou uma base forte necessária para que 1,00 L de solução tampão apresente uma mudança de uma unidade no pH (Skoog et al., 1996).

Esta habilidade em evitar uma mudança significativa no pH é diretamente relacionada à concentração total das espécies do tampão (ácidas e básicas), assim como à razão destas. É verificado que um tampão é mais efetivo a mudanças no pH quando seu pH é igual ao pKa, ou seja, quando as concentrações das espécies ácida e básica são iguais. A região de pH útil de um tampão é usualmente considerada como sendo de pH = pKa ± 1.

A razão fundamental de uma solução tampão resistir a mudanças de pH resulta do fato de que íons hidroxônio ou hidroxila quando adicionados a este tipo de solução, reagem quantitativamente com as espécies básicas e ácidas presentes, originando o ácido fraco e a base fraca, respectivamente.

Intuitivamente, é fácil constatar que quanto maior a concentração das espécies do tampão, maior será a quantidade de íons hidroxônio ou íons hidroxila necessários para a conversão completa dessas espécies a ácidos fracos e bases fracas. Ao final desta conversão, a razão entre a espécie predominante e a de menor quantidade do tampão torna-se elevada e a solução deixa de ser um tampão.

Cabe salientar que para o entendimento do conceito de solução tampão é necessário o conhecimento do conceito de ácido e base de Brønsted- Lowry.

  • Referências
    1. DEF 2000/2001. Dicionário de especialidades farmacêuticas. Jornal Brasileiro de Medicina (Eds.). São Paulo: Editora de Publicações Científicas, 2000. p. 1150.
    2. HARRIS, D.C. Quantitative chemical analysis. 5ª ed. Nova Iorque: W.H. Freeman, 1999. p. 222-233.
    3. LEHNINGER, A.L.; NELSON, D.L. e COX, M.M. Princípios de bioquímica. 2ª ed. Trad. A.A. Simões e W.R.N. Lodi. São Paulo: Sarvier, 1995. p. 71-72.
    4. MANAHAN, S.E. Environmental chemistry. 6ª ed. Boca Raton: Lewis Publishers, 1994. p. 463-465.
    5. PERRIN, D.D. e DEMPSEY, B. Buffer for pH and metal ion control. Londres: Chapman and Hall, 1974.
    6. SKOOG, D.A.; WEST, D.M. e HOLLER, F.J. Fundamentals of analytical chemistry. 7ª ed. Fort Worth: Saunders College, 1996. p. 205-209.
    7. SNYDER, C.H. The extraordinary chemistry of ordinary things. 2ª ed. Nova Iorque: John Wiley & Sons, 1995. p. 512-524.
    8. STUMM, W. Chemistry of the solid-water interface. Nova Iorque: John Wiley & Sons, 1992. p. 189-191.
    9. STUMM, W. e SCHNOOR, J. Atmospheric depositions: impacts of acids on lakes. IN: Physics and chemistry of lakes. 2ª ed. LERMAN, A.; IMBODEN, D.M.; GAT, J.R. (eds.). Heidelberg: Springer-Verlag, 1995. p. 194-196, 200-202.
    10. WRIGHT, R.F. e GJESSING, E.T. Acid precipitation: changes in the chemical composition of lakes. Ambio, v. 5, p. 219, 1976.
    11. ZEITOUN, A.A.M. e DEBEVERE, J.M. Decontamination with lactic-acid sodium lactate buffer in combination with modified atmosphere packaging effects on the shelf-live of fresh poultry. International Journal of Food Microbiology, v. 16, n. 2, 1992, p. 89.
  • Saiba Mais
    1. CHAGAS, A.P. O ensino de aspectos históricos e filosóficos da química e as teorias ácido-base do século XX. Química Nova, v. 23, n. 1, p. 126-133, 2000.
      quimicanova.sbq.org.br/qn/qnol/2000/vol23n1/v23_n1_%20(22).pdf
    2. FAINTUCH, J.; BIROLINI, D. e MACHADO, M.C.C. O equilíbrio ácido-base na prática clínica. São Paulo: Manole, 1977. p. 3-6.
    3. HAEBISCH, H. Fundamentos de fisiologia respiratória humana. São Paulo: EDUSP, 1980. p. 99-101.
    4. OPHARDT, C.E. e KRAUSE, P.F. Blood buffer demonstration. Journal of Chemical Education, v. 60. n. 6, p. 493-494, 1983.
ImprimirImprimir ImprimirEnviar para um amigo
Compartilhe: Delicious Facebook Twitter Digg Google Technorati Live Yahoo
Login
ilustração rodapé
Tema
78291 visitas
Tema
49506 visitas
Tema
45221 visitas
Tema
42253 visitas
Tema
27585 visitas
Tema
25237 visitas
Tema
23724 visitas
Tema
23399 visitas
Tema
19020 visitas
Tema
17620 visitas
Tema
17168 visitas
Tema
16967 visitas
Tema
16424 visitas
Tema
16366 visitas
Tema
15876 visitas
Tema
14634 visitas
Tema
14492 visitas
Tema
13880 visitas
Tema
10183 visitas
Tema
10129 visitas
Tema
7132 visitas
Tema
7109 visitas
Tema
6957 visitas
Tema
6692 visitas
Tema
6546 visitas
Tema
6364 visitas
Tema
2932 visitas
Tema
2600 visitas
Tema
2561 visitas
Tema
1785 visitas
Tema
1324 visitas
Tema
452 visitas
ilustração rodapé
Conceito
63476 visitas
Conceito
58710 visitas
Conceito
44332 visitas
Conceito
41331 visitas
Conceito
39335 visitas
Conceito
30825 visitas
Conceito
30386 visitas
Conceito
28768 visitas
Conceito
22894 visitas
Conceito
21990 visitas
Conceito
21103 visitas
Conceito
19797 visitas
Conceito
15199 visitas
Conceito
14803 visitas
Conceito
14224 visitas
Conceito
13635 visitas
Conceito
12847 visitas
Conceito
12781 visitas
Conceito
12589 visitas
Conceito
12088 visitas
Conceito
12048 visitas
Conceito
10743 visitas
Conceito
8677 visitas
Conceito
8344 visitas
Conceito
8031 visitas
Conceito
7198 visitas
Conceito
5713 visitas
Conceito
5024 visitas
Conceito
3427 visitas
Conceito
3375 visitas
Conceito
2546 visitas
Conceito
1822 visitas
ilustração rodapé
Molécula
7076 visitas
Molécula
6543 visitas
Molécula
6141 visitas
Molécula
6047 visitas
Molécula
5108 visitas
Molécula
4922 visitas
Molécula
4400 visitas
Molécula
4355 visitas
Molécula
4331 visitas
Molécula
4263 visitas
Molécula
3590 visitas
Molécula
3571 visitas
Molécula
3481 visitas
Molécula
3476 visitas
Molécula
3447 visitas
Molécula
3433 visitas
Molécula
3427 visitas
Molécula
3395 visitas
Molécula
3316 visitas
Molécula
3251 visitas
Molécula
3207 visitas
Molécula
2966 visitas
Molécula
2951 visitas
Molécula
2932 visitas
Molécula
2924 visitas
Molécula
2898 visitas
Molécula
2852 visitas
Molécula
2759 visitas
Molécula
2754 visitas
Molécula
2745 visitas
Molécula
2730 visitas
Molécula
2722 visitas
Molécula
2714 visitas
Molécula
2713 visitas
Molécula
2634 visitas
Molécula
2612 visitas
Molécula
2593 visitas
Molécula
2591 visitas
Molécula
2484 visitas
Molécula
2479 visitas
Molécula
2478 visitas
Molécula
2471 visitas
Molécula
2469 visitas
Molécula
2436 visitas
Molécula
2425 visitas
Molécula
2416 visitas
Molécula
2401 visitas
Molécula
2398 visitas
Molécula
2365 visitas
Molécula
2340 visitas
Molécula
2330 visitas
Molécula
2308 visitas
Molécula
2287 visitas
Molécula
2258 visitas
Molécula
2223 visitas
Molécula
2218 visitas
Molécula
2185 visitas
Molécula
2111 visitas
Molécula
2104 visitas
Molécula
2092 visitas
Molécula
2056 visitas
Molécula
2036 visitas
Molécula
2013 visitas
Molécula
2007 visitas
Molécula
2005 visitas
Molécula
1983 visitas
Molécula
1976 visitas
Molécula
1950 visitas
Molécula
1950 visitas
Molécula
1943 visitas
Molécula
1936 visitas
Molécula
1927 visitas
Molécula
1924 visitas
Molécula
1919 visitas
Molécula
1880 visitas
Molécula
1827 visitas
Molécula
1823 visitas
Molécula
1795 visitas
Molécula
1779 visitas
Molécula
1770 visitas
Molécula
1758 visitas
Molécula
1758 visitas
Molécula
1748 visitas
Molécula
1721 visitas
Molécula
1717 visitas
Molécula
1703 visitas
Molécula
1700 visitas
Molécula
1666 visitas
Molécula
1655 visitas
Molécula
1635 visitas
Molécula
1617 visitas
Molécula
1580 visitas
Molécula
1558 visitas
Molécula
1546 visitas
Molécula
1532 visitas
Molécula
1531 visitas
Molécula
1527 visitas
Molécula
1520 visitas
Molécula
1501 visitas
Molécula
1490 visitas
Molécula
1456 visitas
Molécula
1413 visitas
Molécula
1384 visitas
Molécula
1360 visitas
Molécula
1357 visitas
Molécula
1324 visitas
Molécula
1300 visitas
Molécula
1286 visitas
Molécula
1270 visitas
Molécula
1252 visitas
Molécula
1246 visitas
Molécula
1236 visitas
Molécula
1212 visitas
Molécula
1178 visitas
Molécula
1154 visitas
Molécula
1095 visitas
Molécula
1085 visitas
Molécula
704 visitas
Molécula
597 visitas
ilustração rodapé
Sala de Aula
10064 visitas
Sala de Aula
9964 visitas
Sala de Aula
8413 visitas
Sala de Aula
6957 visitas
Sala de Aula
6862 visitas
Sala de Aula
6241 visitas
Sala de Aula
5507 visitas
Sala de Aula
4380 visitas
Sala de Aula
4175 visitas
Sala de Aula
4149 visitas
Sala de Aula
4044 visitas
Sala de Aula
3899 visitas
Sala de Aula
3739 visitas
Sala de Aula
3626 visitas
Sala de Aula
3595 visitas
Sala de Aula
3200 visitas
Sala de Aula
3123 visitas
Sala de Aula
3122 visitas
Sala de Aula
3107 visitas
Sala de Aula
3072 visitas
Sala de Aula
3007 visitas
Sala de Aula
2882 visitas
Sala de Aula
2836 visitas
Sala de Aula
2726 visitas
Sala de Aula
2705 visitas
Sala de Aula
2350 visitas
Sala de Aula
2301 visitas
Sala de Aula
2196 visitas
Sala de Aula
2077 visitas
Sala de Aula
1767 visitas
Sala de Aula
1765 visitas
Sala de Aula
1699 visitas
ilustração rodapé
ilustração rodapé
Materiais Associados
ilustração rodapé
Laboratório de Tecnologia Educacional
Departamento de Bioquímica
Instituto de Biologia - Caixa Postal n° 6109
Universidade Estadual de Campinas - UNICAMP
CEP 13083-970, Campinas, SP, Brasil

Política de Privacidade