Idioma:
  Português  
Logotipo
Navegação
ilustração rodapé
Busca Rápida
Use palavras-chave para achar o que procura.
ilustração rodapé
Estatísticas
UO
1 usuários on-line
VO
118 visitantes on-line
VI
2.683.805 visitas
(Ano 2014)
ilustração rodapé
Redes Sociais
redeSocial2
redeSocial1
ilustração rodapé
RSS
RSS
ilustração rodapé
Solução Tampão e pH
ImprimirImprimir ImprimirEnviar para um amigo
Compartilhe: Delicious Facebook Twitter Digg Google Technorati Live Yahoo

O Conceito de Solução Tampão

Originalmente publicado em Química Nova na Escola, n. 13, maio 2001
Apoio: Sociedade Brasileira de Química
Edição: Leila Cardoso Teruya
Coordenação: Guilherme Andrade Marson
Histórico

O conceito original de ação tamponante surgiu de estudos bioquímicos e da necessidade do controle do pH em diversos aspectos da pesquisa biológica, como por exemplo em estudos com enzimas que têm sua atividade catalítica muito sensível a variações de pH. Neste contexto, em 1900, Fernbach e Hubert, em seus estudos com a enzima amilase, descobriram que uma solução de ácido fosfórico parcialmente neutralizado agia como uma “proteção contra mudanças abruptas na acidez e alcalinidade”. Esta resistência à mudança na concentração hidrogeniônica livre de uma solução foi então descrita por estes pesquisadores como “ação tamponante” (do inglês buffering). Seguindo esta constatação, em 1904, Fels mostrou que o uso de misturas de ácidos fracos com seus sais (ou de bases fracas com seus sais) permitia a obtenção de soluções cuja acidez (ou basicidade) não era alterada pela presença de traços de impurezas ácidas ou básicas na água ou nos sais utilizados na sua preparação, em decorrência de dificuldades experimentais tais como a ausência de reagentes e de água com elevado grau de pureza.

O conceito de pH foi introduzido por Sørensen em 1909, com o intuito de quantificar os valores de acidez e basicidade de uma solução. Ainda neste ano, Henderson apontou o papel fundamental do íon bicarbonato (monoidrogenocarbonato, segundo a IUPAC) na manutenção da concentração hidrogeniônica do sangue, a qual podia ser definida pela equação:

[H+] = K [H2CO3]/[HCO3] (1)

onde K é a constante de equilíbrio da reação da primeira ionização do ácido carbônico (H2CO3). Esta constante K é a constante de equilíbrio químico a uma dada temperatura e fornece uma maneira de descrever quantitativamente os equilíbrios. K representa o quociente dos diferentes valores de concentração das espécies, o qual tem um valor, constante no equilíbrio, independente da concentração das espécies, mas dependente da temperatura. Esta constante para a temperatura corporal (37 °C) é diferente da padrão, para 25 °C, geralmente tabelada.

Segundo estes estudos, a um acréscimo de ácido carbônico (ou outros ácidos, como o lático) na circulação, segue-se uma diminuição do pH sangüíneo, a menos que ocorra uma elevação proporcional de bicarbonato, de modo a manter constante a razão [H2CO3]/[HCO3].


Em 1916, Hasselbach colocou em forma logarítmica a equação de Henderson, simplificando a sua aplicabilidade na área clínica:


pH = pK + log ([HCO3]/[H2CO3]) (2)


Tampões de ocorrência natural e industrial: contextualização

Quase todos os processos biológicos são dependentes do pH; uma pequena variação na acidez produz uma grande variação na velocidade da maioria destes processos.

O pH do sangue de mamíferos é um reflexo do estado do balanço ácido-base do corpo. Em condições normais, o pH é mantido entre 7,35 e 7,45 devido a uma série de mecanismos complexos que compreendem produção, tamponamento e eliminação de ácidos pelo corpo (Perrin e Dempsey, 1974). Um papel importante neste equilíbrio é desempenhado por sistemas inorgânicos, tais como H2PO4/HPO42–, CO2/H2CO3/ HCO3, e grupos orgânicos ácidos e básicos, principalmente de proteínas. Uma diminuição (acidose) ou aumento (alcalose) do pH do sangue pode causar sérios problemas e até mesmo ser fatal. A acidose metabólica é a forma mais freqüentemente observada entre os distúrbios do equilíbrio ácido-base. Pode ser causada por diabetes grave, insuficiência renal, perda de bicarbonato por diarréia e hipoxia ou isquemia, durante, por exemplo, exercício físico intenso. Uma compensação natural da acidose metabólica pelo corpo é o aumento da taxa de respiração, fazendo com que mais CO2 seja expirado.

Tecidos vivos de plantas também são tamponados, embora menos intensamente. O pH normal em tecidos vegetais varia entre 4,0 e 6,2. Nestes tecidos, os principais tampões são fosfatos, carbonatos e ácidos orgânicos, como o málico, cítrico, oxálico, tartárico e alguns aminoácidos.

Dentre os fluidos biológicos, a saliva também constitui uma solução tampão, com a função de neutralizar os ácidos presentes na boca, evitando o desenvolvimento de bactérias que formam a placa bacteriana. O pH normal da saliva varia entre 6,4 e 6,9 no intervalo entre as refeições e de 7,0 a 7,3 enquanto comemos.

A capacidade tamponante em sistemas biogeoquímicos pode ser fator decisivo em impactos ambientais. Um estudo interessante sobre o impacto da chuva ácida sobre lagos da região das Montanhas Adirondack, área de Nova Iorque, revelou que lagos sobre áreas ricas em calcário são menos suscetíveis a acidificação devido à considerável capacidade tamponante das águas destes lagos (Skoog et al., 1996; Wright e Gjessing, 1976). O carbonato de cálcio presente no solo destas regiões reage com os íons hidrônio presentes na água, provenientes em grande parte da chuva ácida:

CaCO3(s) + H3O+(aq) → Ca2+(aq) + HCO3 -(aq) + H2O(l) (3)


levando à formação de um sistema tampão HCO3 -/H2CO3/CO2.


O solo também age como um tampão e resiste às mudanças em pH, mas a sua capacidade tamponante depende do seu tipo. Tal propriedade advém da capacidade de trocar cátions com o meio. Esta troca é o mecanismo pelo qual K+, Ca2+, Mg2+ e metais essenciais, a níveis de traço, são disponibilizados às plantas. O processo de absorção de íons metálicos do solo pelas raízes das plantas e sua conseqüente troca por íons H+, aliado à lixiviação de cálcio, magnésio e outros íons do solo por água contendo ácido carbônico, tende a tornar ácido o solo (Manahan, 1994):


Ca2+ + 2CO2 + 2H2O → (H+)2 + Ca2+(raiz) + 2HCO3 - (4)


O balanço de H+ no solo (produção através das raízes contra o consumo pelo intemperismo) é delicado e pode ser afetado pela deposição ácida. Se a taxa de intemperismo iguala-se ou excede a taxa de liberação de H+ pelas plantas, como seria o caso de um solo calcáreo, o solo manterá um tampão em cátions básicos (Ca2+, K+, NH4+, Al3+) e alcalinidade residual (HCO3 -, H2PO4 etc.). Por outro lado, em solos “ácidos”, a taxa de liberação de H+ pelas plantas pode exceder a taxa de consumo de H+ pelo intemperismo e causar uma acidificação progressiva do solo (Stumm, 1992; Stumm e Schnoor, 1995).

Na indústria de alimentos, alguns ácidos e bases (ácido cítrico, ácido adípico, bicarbonato de sódio, ácido lático, tartarato ácido de potássio, ácido fosfórico) são usados como agentes de processamento para o controle da acidez e alcalinidade de muitos produtos alimentícios. Dependendo da quantidade desses aditivos e da acidez ou alcalinidade do alimento antes da adição destes compostos, pode ocorrer a formação de sistemas tampões ou estes simplesmente funcionam como agentes neutralizantes. Estes tipos de aditivos são usados em gelatinas, fermento, processamento de queijo e em bebidas refrigerantes (Snyder, 1995).

Em alguns casos, a própria solução tampão (ácido lático/lactato de sódio) é adicionada ao alimento, com a função de agente conservante, evitando a deterioração por bactérias e outros microrganismos (Zeitoun e Debevere, 1992). Neste caso, as substâncias do tampão são utilizadas como agentes antimicrobiais mantendo o alimento com o pH baixo e conseqüentemente evitando o desenvolvimento de microrganismos, como fungos e bactérias.

Solução tampão: definição contemporânea

Hoje, o conceito de tampão é aplicado nas diversas áreas do conhecimento. Bioquímicos utilizam tampões devido às propriedades de qualquer sistema biológico ser dependente do pH; além disso, em química analítica e industrial, o controle adequado do pH pode ser essencial na determinação das extensões de reações de precipitação e de eletrodeposição de metais, na efetividade de separações químicas, nas sínteses químicas em geral e no controle de mecanismos de oxidação e reações eletródicas.

Uma definição mais abrangente foi apresentada, recentemente, por Harris (1999): uma solução tamponada resiste a mudanças de pH quando ácidos ou bases são adicionados ou quando uma diluição ocorre.

Embora haja outros tipos de solução tampão, estas soluções são constituídas geralmente de uma mistura de um ácido fraco e sua base conjugada (exemplo: ácido acético e acetato de sódio), ou da mistura de uma base fraca e seu ácido conjugado (exemplo: amônia e cloreto de amônio).

Solução tampão: equilíbrio químico e princípio de Le Chatelier

Uma solução tampão pode ser preparada misturando-se uma solução de ácido fraco com uma solução do seu sal (base conjugada). Analisemos o que ocorre, em termos de equilíbrio químico, após esta mistura. Quando misturamos A mols de ácido fraco (ou de base fraca) com B mols de sua base conjugada (ou de ácido conjugado), a quantidade de matéria do ácido (ou base) permanecerá, no equilíbrio químico, próximo de A e a quantidade de matéria da base conjugada (ou ácido conjugado) próximo de B.

Para entender porque isto ocorre desta forma, analisemos como exemplo as reações de ionização de um ácido fraco e de hidrólise de sua base conjugada em termos do princípio de Le Chatelier.

Consideremos um ácido fraco (ex.: ácido acético, HAc, com Ka = 1,74 x 10-5) e sua base conjugada (ex.: íon acetato, Ac com Kh = Kb = Kw/Ka = 5,75 x 10–10). O baixo valor de Ka equivale a dizer que quando se prepara uma solução 02 mol L–1 de ácido acético a 25 °C, para cada 1000 moléculas de ácido acético, apenas 9 estão ionizadas de acordo com a reação abaixo:

HAc(aq) + H2O(l) H3O+(aq) + Ac(aq) (5)

Ka = 1,74 x 10–5


Portanto, o ácido acético ioniza-se muito pouco, e a adição de um sal de acetato à solução fará com que a ionização do ácido acético seja ainda menor, devido ao efeito do íon comum (acetato), que deslocará o equilíbrio de dissociação do ácido acético no sentido de formação do mesmo, e não da ionização. O mesmo raciocínio pode ser aplicado para o íon acetato (Ac), quando se prepara uma solução 010 mol L-1 destes íons. Nestas condições, devido ao baixo valor de sua constante de hidrólise (Kh), a solução apresenta 75 ânions Ac- hidrolisados para cada 10000 ânions Ac- em solução, a 25 °C, de acordo com a reação:

Ac(aq) + H2O(l) HAc(aq) + OH(aq) (6)

Ka=5,75 x 10–10

Similarmente, o íon acetato reage muito pouco com a água e a adição de ácido acético fará com que o acetato reaja ainda menos devido ao deslocamento da reação de hidrólise no sentido de formação do acetato, ou seja, reprimindo a hidrólise.

Portanto, se por exemplo 010 mol de acetato de sódio + 02 mol de ácido acético forem dissolvidos em 1 L de água, a solução resultante apresentará aproximadamente uma concentração de 010 mol L–1 de acetato de sódio e 02 mol L–1 de ácido acético em equilíbrio químico na solução.

pH de uma solução tampão

O pH de uma solução tampão pode ser estimado pela equação de Henderson-Hasselbalch, que é uma forma rearranjada da expressão de equilíbrio de ionização de um ácido fraco (HA) ou de hidrólise de um ácido conjugado (BH+) de uma base fraca (B). Respectivamente, representamos os equilíbrios químicos destas soluções tampão pelas equações químicas:

HA(aq) + H2O(l) H3O+(aq) + A(aq) (7)

BH+(aq) + H2O(l) H3O+(aq) + B(aq) (8)

E pelas suas respectivas constantes de equilíbrio:

Rearranjando as expressões anteriores, temos as concentrações hidrogeniônicas definidas como:

Aplicando o logaritmo negativo em ambos os lados, temos:

Aplicando a definição de pH, obtemos finalmente a equação de Henderson-Hasselbalch para os dois tipos de soluções tampão:

Estas expressões fornecem o pH de uma solução tampão, sabendo-se a razão entre as concentrações da espécie ácida (ácido fraco, HA, ou ácido conjugado de uma base fraca, BH+) e da espécie básica (base conjugada de um ácido fraco, A, ou base fraca, B).

Pode-se estimar, por exemplo, o pH do sangue em uma situação de acidose respiratória descompensada, através das concentrações em equilíbrio, de HCO3 e H2CO3 (resultante da associação de gás carbônico e água em plasma sangüíneo). Nestas condições, o plasma sangüíneo apresenta 0027 mol L–1 de HCO3 e 00025 mol L–1 de H2CO3 (DEF, 2000/2001). Aplicandose estes valores na equação:

teremos que a espécie básica, representada por A corresponde neste caso ao íon HCO3 e a espécie ácida representada por HA refere-se ao H2CO3. Uma vez que o valor de Ka (constante de dissociação do ácido) é de 4,45 x 10-7, pKa = -log Ka = 6,10, à temperatura corporal. Finalmente, substituindo-se os valores citados na equação apresentada, teremos que o pH do sangue no caso apresentado é 7,13, típico caso de acidose.

É importante enfatizar que no caso da ionização da espécie ácida (HA ou HB+), pKa = -log Ka, e no caso do ácido conjugado de base fraca (HB+), Ka = Kw/Kb; conseqüentemente, pKa = pKw - pKb, e Kb refere-se à ionização de uma base fraca B. Assim, para um tampão NH3/NH4Cl, a espécie básica representada por B corresponde à NH3 e seu ácido conjugado representado por BH+ corresponde ao cátion NH4+ oriundo do sal de cloreto. Sabendo-se que o pKb da base NH3 é igual a 4,76, podemos concluir que o pKa do seu ácido conjugado NH4+ é igual a pKw - pKb, que a 25 °C equivale a 14,00 - 4,76 = 9,24.

Considerando uma solução tampão NH3 /NH4Cl, em que ambas as espécies têm concentração de 010 mol L–1, pode-se calcular o pH desta solução de acordo com a equação abaixo:

Lembrando-se que [B] = [NH3] = 010 mol L–1, que [BH+] = [NH4+] = 010 mol L–1, e que pKa do íon amônio é 9,24, como obtido anteriormente, teremos o valor de pH desta solução tampão: pH = 9,24 + log 1 = 9,24.

Verifica-se que quando a razão entre as espécies básica e ácida é igual a 1, o pH da solução tampão é idêntico ao pKa, e quando a razão é menor ou maior que 1, o pH é, respectivamente, menor ou maior que o pKa.

A capacidade de uma solução tamponante

A capacidade tamponante de uma solução tampão é, qualitativamente, a habilidade desta solução de resistir a mudanças de pH frente a adições de um ácido ou de uma base. Quantitativamente, a capacidade tampão de uma solução é definida como a quantidade de matéria de um ácido forte ou uma base forte necessária para que 1,00 L de solução tampão apresente uma mudança de uma unidade no pH (Skoog et al., 1996).

Esta habilidade em evitar uma mudança significativa no pH é diretamente relacionada à concentração total das espécies do tampão (ácidas e básicas), assim como à razão destas. É verificado que um tampão é mais efetivo a mudanças no pH quando seu pH é igual ao pKa, ou seja, quando as concentrações das espécies ácida e básica são iguais. A região de pH útil de um tampão é usualmente considerada como sendo de pH = pKa ± 1.

A razão fundamental de uma solução tampão resistir a mudanças de pH resulta do fato de que íons hidroxônio ou hidroxila quando adicionados a este tipo de solução, reagem quantitativamente com as espécies básicas e ácidas presentes, originando o ácido fraco e a base fraca, respectivamente.

Intuitivamente, é fácil constatar que quanto maior a concentração das espécies do tampão, maior será a quantidade de íons hidroxônio ou íons hidroxila necessários para a conversão completa dessas espécies a ácidos fracos e bases fracas. Ao final desta conversão, a razão entre a espécie predominante e a de menor quantidade do tampão torna-se elevada e a solução deixa de ser um tampão.

Cabe salientar que para o entendimento do conceito de solução tampão é necessário o conhecimento do conceito de ácido e base de Brønsted- Lowry.

  • Referências
    1. DEF 2000/2001. Dicionário de especialidades farmacêuticas. Jornal Brasileiro de Medicina (Eds.). São Paulo: Editora de Publicações Científicas, 2000. p. 1150.
    2. HARRIS, D.C. Quantitative chemical analysis. 5ª ed. Nova Iorque: W.H. Freeman, 1999. p. 222-233.
    3. LEHNINGER, A.L.; NELSON, D.L. e COX, M.M. Princípios de bioquímica. 2ª ed. Trad. A.A. Simões e W.R.N. Lodi. São Paulo: Sarvier, 1995. p. 71-72.
    4. MANAHAN, S.E. Environmental chemistry. 6ª ed. Boca Raton: Lewis Publishers, 1994. p. 463-465.
    5. PERRIN, D.D. e DEMPSEY, B. Buffer for pH and metal ion control. Londres: Chapman and Hall, 1974.
    6. SKOOG, D.A.; WEST, D.M. e HOLLER, F.J. Fundamentals of analytical chemistry. 7ª ed. Fort Worth: Saunders College, 1996. p. 205-209.
    7. SNYDER, C.H. The extraordinary chemistry of ordinary things. 2ª ed. Nova Iorque: John Wiley & Sons, 1995. p. 512-524.
    8. STUMM, W. Chemistry of the solid-water interface. Nova Iorque: John Wiley & Sons, 1992. p. 189-191.
    9. STUMM, W. e SCHNOOR, J. Atmospheric depositions: impacts of acids on lakes. IN: Physics and chemistry of lakes. 2ª ed. LERMAN, A.; IMBODEN, D.M.; GAT, J.R. (eds.). Heidelberg: Springer-Verlag, 1995. p. 194-196, 200-202.
    10. WRIGHT, R.F. e GJESSING, E.T. Acid precipitation: changes in the chemical composition of lakes. Ambio, v. 5, p. 219, 1976.
    11. ZEITOUN, A.A.M. e DEBEVERE, J.M. Decontamination with lactic-acid sodium lactate buffer in combination with modified atmosphere packaging effects on the shelf-live of fresh poultry. International Journal of Food Microbiology, v. 16, n. 2, 1992, p. 89.
  • Saiba Mais
    1. CHAGAS, A.P. O ensino de aspectos históricos e filosóficos da química e as teorias ácido-base do século XX. Química Nova, v. 23, n. 1, p. 126-133, 2000.
      quimicanova.sbq.org.br/qn/qnol/2000/vol23n1/v23_n1_%20(22).pdf
    2. FAINTUCH, J.; BIROLINI, D. e MACHADO, M.C.C. O equilíbrio ácido-base na prática clínica. São Paulo: Manole, 1977. p. 3-6.
    3. HAEBISCH, H. Fundamentos de fisiologia respiratória humana. São Paulo: EDUSP, 1980. p. 99-101.
    4. OPHARDT, C.E. e KRAUSE, P.F. Blood buffer demonstration. Journal of Chemical Education, v. 60. n. 6, p. 493-494, 1983.
ImprimirImprimir ImprimirEnviar para um amigo
Compartilhe: Delicious Facebook Twitter Digg Google Technorati Live Yahoo
Login
ilustração rodapé
Tema
83790 visitas
Tema
51282 visitas
Tema
47035 visitas
Tema
42887 visitas
Tema
28826 visitas
Tema
26523 visitas
Tema
26494 visitas
Tema
25659 visitas
Tema
20472 visitas
Tema
18527 visitas
Tema
17994 visitas
Tema
17932 visitas
Tema
17752 visitas
Tema
17730 visitas
Tema
17084 visitas
Tema
16040 visitas
Tema
15063 visitas
Tema
14568 visitas
Tema
11098 visitas
Tema
10909 visitas
Tema
7897 visitas
Tema
7697 visitas
Tema
7573 visitas
Tema
7475 visitas
Tema
7271 visitas
Tema
7063 visitas
Tema
3298 visitas
Tema
2945 visitas
Tema
2876 visitas
Tema
2316 visitas
Tema
1519 visitas
Tema
1257 visitas
Tema
845 visitas
ilustração rodapé
Conceito
67517 visitas
Conceito
62533 visitas
Conceito
46097 visitas
Conceito
44531 visitas
Conceito
42131 visitas
Conceito
32661 visitas
Conceito
31485 visitas
Conceito
30842 visitas
Conceito
24514 visitas
Conceito
23248 visitas
Conceito
23145 visitas
Conceito
21556 visitas
Conceito
15716 visitas
Conceito
15633 visitas
Conceito
14877 visitas
Conceito
14590 visitas
Conceito
13932 visitas
Conceito
13504 visitas
Conceito
13388 visitas
Conceito
12749 visitas
Conceito
12587 visitas
Conceito
11448 visitas
Conceito
9588 visitas
Conceito
9366 visitas
Conceito
8666 visitas
Conceito
7658 visitas
Conceito
6446 visitas
Conceito
5340 visitas
Conceito
3670 visitas
Conceito
3530 visitas
Conceito
3037 visitas
Conceito
2313 visitas
ilustração rodapé
Molécula
7660 visitas
Molécula
6816 visitas
Molécula
6265 visitas
Molécula
6148 visitas
Molécula
5257 visitas
Molécula
5214 visitas
Molécula
4676 visitas
Molécula
4491 visitas
Molécula
4459 visitas
Molécula
4381 visitas
Molécula
3793 visitas
Molécula
3791 visitas
Molécula
3739 visitas
Molécula
3660 visitas
Molécula
3650 visitas
Molécula
3623 visitas
Molécula
3592 visitas
Molécula
3549 visitas
Molécula
3493 visitas
Molécula
3489 visitas
Molécula
3399 visitas
Molécula
3253 visitas
Molécula
3227 visitas
Molécula
3122 visitas
Molécula
3087 visitas
Molécula
3022 visitas
Molécula
2999 visitas
Molécula
2950 visitas
Molécula
2906 visitas
Molécula
2873 visitas
Molécula
2869 visitas
Molécula
2865 visitas
Molécula
2858 visitas
Molécula
2851 visitas
Molécula
2830 visitas
Molécula
2792 visitas
Molécula
2765 visitas
Molécula
2740 visitas
Molécula
2625 visitas
Molécula
2621 visitas
Molécula
2612 visitas
Molécula
2573 visitas
Molécula
2568 visitas
Molécula
2556 visitas
Molécula
2535 visitas
Molécula
2531 visitas
Molécula
2514 visitas
Molécula
2477 visitas
Molécula
2471 visitas
Molécula
2401 visitas
Molécula
2400 visitas
Molécula
2399 visitas
Molécula
2369 visitas
Molécula
2349 visitas
Molécula
2348 visitas
Molécula
2337 visitas
Molécula
2286 visitas
Molécula
2232 visitas
Molécula
2217 visitas
Molécula
2187 visitas
Molécula
2183 visitas
Molécula
2154 visitas
Molécula
2134 visitas
Molécula
2115 visitas
Molécula
2083 visitas
Molécula
2072 visitas
Molécula
2049 visitas
Molécula
2045 visitas
Molécula
2022 visitas
Molécula
2014 visitas
Molécula
2010 visitas
Molécula
1994 visitas
Molécula
1984 visitas
Molécula
1979 visitas
Molécula
1977 visitas
Molécula
1932 visitas
Molécula
1899 visitas
Molécula
1886 visitas
Molécula
1854 visitas
Molécula
1835 visitas
Molécula
1831 visitas
Molécula
1830 visitas
Molécula
1810 visitas
Molécula
1803 visitas
Molécula
1796 visitas
Molécula
1794 visitas
Molécula
1761 visitas
Molécula
1735 visitas
Molécula
1726 visitas
Molécula
1717 visitas
Molécula
1709 visitas
Molécula
1669 visitas
Molécula
1665 visitas
Molécula
1661 visitas
Molécula
1629 visitas
Molécula
1625 visitas
Molécula
1607 visitas
Molécula
1598 visitas
Molécula
1561 visitas
Molécula
1539 visitas
Molécula
1523 visitas
Molécula
1507 visitas
Molécula
1484 visitas
Molécula
1443 visitas
Molécula
1428 visitas
Molécula
1409 visitas
Molécula
1404 visitas
Molécula
1371 visitas
Molécula
1362 visitas
Molécula
1352 visitas
Molécula
1334 visitas
Molécula
1282 visitas
Molécula
1257 visitas
Molécula
1230 visitas
Molécula
1196 visitas
Molécula
1178 visitas
Molécula
1128 visitas
Molécula
730 visitas
Molécula
618 visitas
ilustração rodapé
Sala de Aula
10349 visitas
Sala de Aula
10253 visitas
Sala de Aula
8619 visitas
Sala de Aula
7205 visitas
Sala de Aula
7040 visitas
Sala de Aula
6526 visitas
Sala de Aula
5836 visitas
Sala de Aula
4636 visitas
Sala de Aula
4565 visitas
Sala de Aula
4293 visitas
Sala de Aula
4212 visitas
Sala de Aula
4044 visitas
Sala de Aula
3832 visitas
Sala de Aula
3792 visitas
Sala de Aula
3746 visitas
Sala de Aula
3295 visitas
Sala de Aula
3287 visitas
Sala de Aula
3252 visitas
Sala de Aula
3234 visitas
Sala de Aula
3188 visitas
Sala de Aula
3119 visitas
Sala de Aula
3032 visitas
Sala de Aula
2964 visitas
Sala de Aula
2928 visitas
Sala de Aula
2895 visitas
Sala de Aula
2498 visitas
Sala de Aula
2405 visitas
Sala de Aula
2396 visitas
Sala de Aula
2333 visitas
Sala de Aula
2148 visitas
Sala de Aula
1895 visitas
Sala de Aula
1884 visitas
ilustração rodapé
ilustração rodapé
Materiais Associados
ilustração rodapé
Laboratório de Tecnologia Educacional
Departamento de Bioquímica
Instituto de Biologia - Caixa Postal n° 6109
Universidade Estadual de Campinas - UNICAMP
CEP 13083-970, Campinas, SP, Brasil

Política de Privacidade