Idioma:
  Português  
Logotipo
Navegação
ilustração rodapé
Busca Rápida
Use palavras-chave para achar o que procura.
ilustração rodapé
Estatísticas
UO
0 usuários on-line
VO
53 visitantes on-line
VI
2.882.726 visitas
(Ano 2014)
ilustração rodapé
Redes Sociais
redeSocial2
redeSocial1
ilustração rodapé
RSS
RSS
ilustração rodapé
Solução Tampão e pH
ImprimirImprimir ImprimirEnviar para um amigo
Compartilhe: Delicious Facebook Twitter Digg Google Technorati Live Yahoo

O Conceito de Solução Tampão

Originalmente publicado em Química Nova na Escola, n. 13, maio 2001
Apoio: Sociedade Brasileira de Química
Edição: Leila Cardoso Teruya
Coordenação: Guilherme Andrade Marson
Histórico

O conceito original de ação tamponante surgiu de estudos bioquímicos e da necessidade do controle do pH em diversos aspectos da pesquisa biológica, como por exemplo em estudos com enzimas que têm sua atividade catalítica muito sensível a variações de pH. Neste contexto, em 1900, Fernbach e Hubert, em seus estudos com a enzima amilase, descobriram que uma solução de ácido fosfórico parcialmente neutralizado agia como uma “proteção contra mudanças abruptas na acidez e alcalinidade”. Esta resistência à mudança na concentração hidrogeniônica livre de uma solução foi então descrita por estes pesquisadores como “ação tamponante” (do inglês buffering). Seguindo esta constatação, em 1904, Fels mostrou que o uso de misturas de ácidos fracos com seus sais (ou de bases fracas com seus sais) permitia a obtenção de soluções cuja acidez (ou basicidade) não era alterada pela presença de traços de impurezas ácidas ou básicas na água ou nos sais utilizados na sua preparação, em decorrência de dificuldades experimentais tais como a ausência de reagentes e de água com elevado grau de pureza.

O conceito de pH foi introduzido por Sørensen em 1909, com o intuito de quantificar os valores de acidez e basicidade de uma solução. Ainda neste ano, Henderson apontou o papel fundamental do íon bicarbonato (monoidrogenocarbonato, segundo a IUPAC) na manutenção da concentração hidrogeniônica do sangue, a qual podia ser definida pela equação:

[H+] = K [H2CO3]/[HCO3] (1)

onde K é a constante de equilíbrio da reação da primeira ionização do ácido carbônico (H2CO3). Esta constante K é a constante de equilíbrio químico a uma dada temperatura e fornece uma maneira de descrever quantitativamente os equilíbrios. K representa o quociente dos diferentes valores de concentração das espécies, o qual tem um valor, constante no equilíbrio, independente da concentração das espécies, mas dependente da temperatura. Esta constante para a temperatura corporal (37 °C) é diferente da padrão, para 25 °C, geralmente tabelada.

Segundo estes estudos, a um acréscimo de ácido carbônico (ou outros ácidos, como o lático) na circulação, segue-se uma diminuição do pH sangüíneo, a menos que ocorra uma elevação proporcional de bicarbonato, de modo a manter constante a razão [H2CO3]/[HCO3].


Em 1916, Hasselbach colocou em forma logarítmica a equação de Henderson, simplificando a sua aplicabilidade na área clínica:


pH = pK + log ([HCO3]/[H2CO3]) (2)


Tampões de ocorrência natural e industrial: contextualização

Quase todos os processos biológicos são dependentes do pH; uma pequena variação na acidez produz uma grande variação na velocidade da maioria destes processos.

O pH do sangue de mamíferos é um reflexo do estado do balanço ácido-base do corpo. Em condições normais, o pH é mantido entre 7,35 e 7,45 devido a uma série de mecanismos complexos que compreendem produção, tamponamento e eliminação de ácidos pelo corpo (Perrin e Dempsey, 1974). Um papel importante neste equilíbrio é desempenhado por sistemas inorgânicos, tais como H2PO4/HPO42–, CO2/H2CO3/ HCO3, e grupos orgânicos ácidos e básicos, principalmente de proteínas. Uma diminuição (acidose) ou aumento (alcalose) do pH do sangue pode causar sérios problemas e até mesmo ser fatal. A acidose metabólica é a forma mais freqüentemente observada entre os distúrbios do equilíbrio ácido-base. Pode ser causada por diabetes grave, insuficiência renal, perda de bicarbonato por diarréia e hipoxia ou isquemia, durante, por exemplo, exercício físico intenso. Uma compensação natural da acidose metabólica pelo corpo é o aumento da taxa de respiração, fazendo com que mais CO2 seja expirado.

Tecidos vivos de plantas também são tamponados, embora menos intensamente. O pH normal em tecidos vegetais varia entre 4,0 e 6,2. Nestes tecidos, os principais tampões são fosfatos, carbonatos e ácidos orgânicos, como o málico, cítrico, oxálico, tartárico e alguns aminoácidos.

Dentre os fluidos biológicos, a saliva também constitui uma solução tampão, com a função de neutralizar os ácidos presentes na boca, evitando o desenvolvimento de bactérias que formam a placa bacteriana. O pH normal da saliva varia entre 6,4 e 6,9 no intervalo entre as refeições e de 7,0 a 7,3 enquanto comemos.

A capacidade tamponante em sistemas biogeoquímicos pode ser fator decisivo em impactos ambientais. Um estudo interessante sobre o impacto da chuva ácida sobre lagos da região das Montanhas Adirondack, área de Nova Iorque, revelou que lagos sobre áreas ricas em calcário são menos suscetíveis a acidificação devido à considerável capacidade tamponante das águas destes lagos (Skoog et al., 1996; Wright e Gjessing, 1976). O carbonato de cálcio presente no solo destas regiões reage com os íons hidrônio presentes na água, provenientes em grande parte da chuva ácida:

CaCO3(s) + H3O+(aq) → Ca2+(aq) + HCO3 -(aq) + H2O(l) (3)


levando à formação de um sistema tampão HCO3 -/H2CO3/CO2.


O solo também age como um tampão e resiste às mudanças em pH, mas a sua capacidade tamponante depende do seu tipo. Tal propriedade advém da capacidade de trocar cátions com o meio. Esta troca é o mecanismo pelo qual K+, Ca2+, Mg2+ e metais essenciais, a níveis de traço, são disponibilizados às plantas. O processo de absorção de íons metálicos do solo pelas raízes das plantas e sua conseqüente troca por íons H+, aliado à lixiviação de cálcio, magnésio e outros íons do solo por água contendo ácido carbônico, tende a tornar ácido o solo (Manahan, 1994):


Ca2+ + 2CO2 + 2H2O → (H+)2 + Ca2+(raiz) + 2HCO3 - (4)


O balanço de H+ no solo (produção através das raízes contra o consumo pelo intemperismo) é delicado e pode ser afetado pela deposição ácida. Se a taxa de intemperismo iguala-se ou excede a taxa de liberação de H+ pelas plantas, como seria o caso de um solo calcáreo, o solo manterá um tampão em cátions básicos (Ca2+, K+, NH4+, Al3+) e alcalinidade residual (HCO3 -, H2PO4 etc.). Por outro lado, em solos “ácidos”, a taxa de liberação de H+ pelas plantas pode exceder a taxa de consumo de H+ pelo intemperismo e causar uma acidificação progressiva do solo (Stumm, 1992; Stumm e Schnoor, 1995).

Na indústria de alimentos, alguns ácidos e bases (ácido cítrico, ácido adípico, bicarbonato de sódio, ácido lático, tartarato ácido de potássio, ácido fosfórico) são usados como agentes de processamento para o controle da acidez e alcalinidade de muitos produtos alimentícios. Dependendo da quantidade desses aditivos e da acidez ou alcalinidade do alimento antes da adição destes compostos, pode ocorrer a formação de sistemas tampões ou estes simplesmente funcionam como agentes neutralizantes. Estes tipos de aditivos são usados em gelatinas, fermento, processamento de queijo e em bebidas refrigerantes (Snyder, 1995).

Em alguns casos, a própria solução tampão (ácido lático/lactato de sódio) é adicionada ao alimento, com a função de agente conservante, evitando a deterioração por bactérias e outros microrganismos (Zeitoun e Debevere, 1992). Neste caso, as substâncias do tampão são utilizadas como agentes antimicrobiais mantendo o alimento com o pH baixo e conseqüentemente evitando o desenvolvimento de microrganismos, como fungos e bactérias.

Solução tampão: definição contemporânea

Hoje, o conceito de tampão é aplicado nas diversas áreas do conhecimento. Bioquímicos utilizam tampões devido às propriedades de qualquer sistema biológico ser dependente do pH; além disso, em química analítica e industrial, o controle adequado do pH pode ser essencial na determinação das extensões de reações de precipitação e de eletrodeposição de metais, na efetividade de separações químicas, nas sínteses químicas em geral e no controle de mecanismos de oxidação e reações eletródicas.

Uma definição mais abrangente foi apresentada, recentemente, por Harris (1999): uma solução tamponada resiste a mudanças de pH quando ácidos ou bases são adicionados ou quando uma diluição ocorre.

Embora haja outros tipos de solução tampão, estas soluções são constituídas geralmente de uma mistura de um ácido fraco e sua base conjugada (exemplo: ácido acético e acetato de sódio), ou da mistura de uma base fraca e seu ácido conjugado (exemplo: amônia e cloreto de amônio).

Solução tampão: equilíbrio químico e princípio de Le Chatelier

Uma solução tampão pode ser preparada misturando-se uma solução de ácido fraco com uma solução do seu sal (base conjugada). Analisemos o que ocorre, em termos de equilíbrio químico, após esta mistura. Quando misturamos A mols de ácido fraco (ou de base fraca) com B mols de sua base conjugada (ou de ácido conjugado), a quantidade de matéria do ácido (ou base) permanecerá, no equilíbrio químico, próximo de A e a quantidade de matéria da base conjugada (ou ácido conjugado) próximo de B.

Para entender porque isto ocorre desta forma, analisemos como exemplo as reações de ionização de um ácido fraco e de hidrólise de sua base conjugada em termos do princípio de Le Chatelier.

Consideremos um ácido fraco (ex.: ácido acético, HAc, com Ka = 1,74 x 10-5) e sua base conjugada (ex.: íon acetato, Ac com Kh = Kb = Kw/Ka = 5,75 x 10–10). O baixo valor de Ka equivale a dizer que quando se prepara uma solução 02 mol L–1 de ácido acético a 25 °C, para cada 1000 moléculas de ácido acético, apenas 9 estão ionizadas de acordo com a reação abaixo:

HAc(aq) + H2O(l) H3O+(aq) + Ac(aq) (5)

Ka = 1,74 x 10–5


Portanto, o ácido acético ioniza-se muito pouco, e a adição de um sal de acetato à solução fará com que a ionização do ácido acético seja ainda menor, devido ao efeito do íon comum (acetato), que deslocará o equilíbrio de dissociação do ácido acético no sentido de formação do mesmo, e não da ionização. O mesmo raciocínio pode ser aplicado para o íon acetato (Ac), quando se prepara uma solução 010 mol L-1 destes íons. Nestas condições, devido ao baixo valor de sua constante de hidrólise (Kh), a solução apresenta 75 ânions Ac- hidrolisados para cada 10000 ânions Ac- em solução, a 25 °C, de acordo com a reação:

Ac(aq) + H2O(l) HAc(aq) + OH(aq) (6)

Ka=5,75 x 10–10

Similarmente, o íon acetato reage muito pouco com a água e a adição de ácido acético fará com que o acetato reaja ainda menos devido ao deslocamento da reação de hidrólise no sentido de formação do acetato, ou seja, reprimindo a hidrólise.

Portanto, se por exemplo 010 mol de acetato de sódio + 02 mol de ácido acético forem dissolvidos em 1 L de água, a solução resultante apresentará aproximadamente uma concentração de 010 mol L–1 de acetato de sódio e 02 mol L–1 de ácido acético em equilíbrio químico na solução.

pH de uma solução tampão

O pH de uma solução tampão pode ser estimado pela equação de Henderson-Hasselbalch, que é uma forma rearranjada da expressão de equilíbrio de ionização de um ácido fraco (HA) ou de hidrólise de um ácido conjugado (BH+) de uma base fraca (B). Respectivamente, representamos os equilíbrios químicos destas soluções tampão pelas equações químicas:

HA(aq) + H2O(l) H3O+(aq) + A(aq) (7)

BH+(aq) + H2O(l) H3O+(aq) + B(aq) (8)

E pelas suas respectivas constantes de equilíbrio:

Rearranjando as expressões anteriores, temos as concentrações hidrogeniônicas definidas como:

Aplicando o logaritmo negativo em ambos os lados, temos:

Aplicando a definição de pH, obtemos finalmente a equação de Henderson-Hasselbalch para os dois tipos de soluções tampão:

Estas expressões fornecem o pH de uma solução tampão, sabendo-se a razão entre as concentrações da espécie ácida (ácido fraco, HA, ou ácido conjugado de uma base fraca, BH+) e da espécie básica (base conjugada de um ácido fraco, A, ou base fraca, B).

Pode-se estimar, por exemplo, o pH do sangue em uma situação de acidose respiratória descompensada, através das concentrações em equilíbrio, de HCO3 e H2CO3 (resultante da associação de gás carbônico e água em plasma sangüíneo). Nestas condições, o plasma sangüíneo apresenta 0027 mol L–1 de HCO3 e 00025 mol L–1 de H2CO3 (DEF, 2000/2001). Aplicandose estes valores na equação:

teremos que a espécie básica, representada por A corresponde neste caso ao íon HCO3 e a espécie ácida representada por HA refere-se ao H2CO3. Uma vez que o valor de Ka (constante de dissociação do ácido) é de 4,45 x 10-7, pKa = -log Ka = 6,10, à temperatura corporal. Finalmente, substituindo-se os valores citados na equação apresentada, teremos que o pH do sangue no caso apresentado é 7,13, típico caso de acidose.

É importante enfatizar que no caso da ionização da espécie ácida (HA ou HB+), pKa = -log Ka, e no caso do ácido conjugado de base fraca (HB+), Ka = Kw/Kb; conseqüentemente, pKa = pKw - pKb, e Kb refere-se à ionização de uma base fraca B. Assim, para um tampão NH3/NH4Cl, a espécie básica representada por B corresponde à NH3 e seu ácido conjugado representado por BH+ corresponde ao cátion NH4+ oriundo do sal de cloreto. Sabendo-se que o pKb da base NH3 é igual a 4,76, podemos concluir que o pKa do seu ácido conjugado NH4+ é igual a pKw - pKb, que a 25 °C equivale a 14,00 - 4,76 = 9,24.

Considerando uma solução tampão NH3 /NH4Cl, em que ambas as espécies têm concentração de 010 mol L–1, pode-se calcular o pH desta solução de acordo com a equação abaixo:

Lembrando-se que [B] = [NH3] = 010 mol L–1, que [BH+] = [NH4+] = 010 mol L–1, e que pKa do íon amônio é 9,24, como obtido anteriormente, teremos o valor de pH desta solução tampão: pH = 9,24 + log 1 = 9,24.

Verifica-se que quando a razão entre as espécies básica e ácida é igual a 1, o pH da solução tampão é idêntico ao pKa, e quando a razão é menor ou maior que 1, o pH é, respectivamente, menor ou maior que o pKa.

A capacidade de uma solução tamponante

A capacidade tamponante de uma solução tampão é, qualitativamente, a habilidade desta solução de resistir a mudanças de pH frente a adições de um ácido ou de uma base. Quantitativamente, a capacidade tampão de uma solução é definida como a quantidade de matéria de um ácido forte ou uma base forte necessária para que 1,00 L de solução tampão apresente uma mudança de uma unidade no pH (Skoog et al., 1996).

Esta habilidade em evitar uma mudança significativa no pH é diretamente relacionada à concentração total das espécies do tampão (ácidas e básicas), assim como à razão destas. É verificado que um tampão é mais efetivo a mudanças no pH quando seu pH é igual ao pKa, ou seja, quando as concentrações das espécies ácida e básica são iguais. A região de pH útil de um tampão é usualmente considerada como sendo de pH = pKa ± 1.

A razão fundamental de uma solução tampão resistir a mudanças de pH resulta do fato de que íons hidroxônio ou hidroxila quando adicionados a este tipo de solução, reagem quantitativamente com as espécies básicas e ácidas presentes, originando o ácido fraco e a base fraca, respectivamente.

Intuitivamente, é fácil constatar que quanto maior a concentração das espécies do tampão, maior será a quantidade de íons hidroxônio ou íons hidroxila necessários para a conversão completa dessas espécies a ácidos fracos e bases fracas. Ao final desta conversão, a razão entre a espécie predominante e a de menor quantidade do tampão torna-se elevada e a solução deixa de ser um tampão.

Cabe salientar que para o entendimento do conceito de solução tampão é necessário o conhecimento do conceito de ácido e base de Brønsted- Lowry.

  • Referências
    1. DEF 2000/2001. Dicionário de especialidades farmacêuticas. Jornal Brasileiro de Medicina (Eds.). São Paulo: Editora de Publicações Científicas, 2000. p. 1150.
    2. HARRIS, D.C. Quantitative chemical analysis. 5ª ed. Nova Iorque: W.H. Freeman, 1999. p. 222-233.
    3. LEHNINGER, A.L.; NELSON, D.L. e COX, M.M. Princípios de bioquímica. 2ª ed. Trad. A.A. Simões e W.R.N. Lodi. São Paulo: Sarvier, 1995. p. 71-72.
    4. MANAHAN, S.E. Environmental chemistry. 6ª ed. Boca Raton: Lewis Publishers, 1994. p. 463-465.
    5. PERRIN, D.D. e DEMPSEY, B. Buffer for pH and metal ion control. Londres: Chapman and Hall, 1974.
    6. SKOOG, D.A.; WEST, D.M. e HOLLER, F.J. Fundamentals of analytical chemistry. 7ª ed. Fort Worth: Saunders College, 1996. p. 205-209.
    7. SNYDER, C.H. The extraordinary chemistry of ordinary things. 2ª ed. Nova Iorque: John Wiley & Sons, 1995. p. 512-524.
    8. STUMM, W. Chemistry of the solid-water interface. Nova Iorque: John Wiley & Sons, 1992. p. 189-191.
    9. STUMM, W. e SCHNOOR, J. Atmospheric depositions: impacts of acids on lakes. IN: Physics and chemistry of lakes. 2ª ed. LERMAN, A.; IMBODEN, D.M.; GAT, J.R. (eds.). Heidelberg: Springer-Verlag, 1995. p. 194-196, 200-202.
    10. WRIGHT, R.F. e GJESSING, E.T. Acid precipitation: changes in the chemical composition of lakes. Ambio, v. 5, p. 219, 1976.
    11. ZEITOUN, A.A.M. e DEBEVERE, J.M. Decontamination with lactic-acid sodium lactate buffer in combination with modified atmosphere packaging effects on the shelf-live of fresh poultry. International Journal of Food Microbiology, v. 16, n. 2, 1992, p. 89.
  • Saiba Mais
    1. CHAGAS, A.P. O ensino de aspectos históricos e filosóficos da química e as teorias ácido-base do século XX. Química Nova, v. 23, n. 1, p. 126-133, 2000.
      quimicanova.sbq.org.br/qn/qnol/2000/vol23n1/v23_n1_%20(22).pdf
    2. FAINTUCH, J.; BIROLINI, D. e MACHADO, M.C.C. O equilíbrio ácido-base na prática clínica. São Paulo: Manole, 1977. p. 3-6.
    3. HAEBISCH, H. Fundamentos de fisiologia respiratória humana. São Paulo: EDUSP, 1980. p. 99-101.
    4. OPHARDT, C.E. e KRAUSE, P.F. Blood buffer demonstration. Journal of Chemical Education, v. 60. n. 6, p. 493-494, 1983.
ImprimirImprimir ImprimirEnviar para um amigo
Compartilhe: Delicious Facebook Twitter Digg Google Technorati Live Yahoo
Login
ilustração rodapé
Tema
86832 visitas
Tema
52518 visitas
Tema
48000 visitas
Tema
43353 visitas
Tema
29574 visitas
Tema
27972 visitas
Tema
27355 visitas
Tema
27248 visitas
Tema
21377 visitas
Tema
19155 visitas
Tema
18971 visitas
Tema
18832 visitas
Tema
18452 visitas
Tema
18427 visitas
Tema
18076 visitas
Tema
16956 visitas
Tema
15407 visitas
Tema
15088 visitas
Tema
11853 visitas
Tema
11385 visitas
Tema
8613 visitas
Tema
8515 visitas
Tema
7931 visitas
Tema
7690 visitas
Tema
7654 visitas
Tema
7324 visitas
Tema
3524 visitas
Tema
3168 visitas
Tema
3055 visitas
Tema
2577 visitas
Tema
1606 visitas
Tema
1596 visitas
Tema
1120 visitas
ilustração rodapé
Conceito
70842 visitas
Conceito
65165 visitas
Conceito
47508 visitas
Conceito
46581 visitas
Conceito
43789 visitas
Conceito
34242 visitas
Conceito
32371 visitas
Conceito
32272 visitas
Conceito
25795 visitas
Conceito
24526 visitas
Conceito
23867 visitas
Conceito
22366 visitas
Conceito
16135 visitas
Conceito
16064 visitas
Conceito
15257 visitas
Conceito
15047 visitas
Conceito
14754 visitas
Conceito
13998 visitas
Conceito
13889 visitas
Conceito
13130 visitas
Conceito
12886 visitas
Conceito
11879 visitas
Conceito
10578 visitas
Conceito
9683 visitas
Conceito
9132 visitas
Conceito
7919 visitas
Conceito
6829 visitas
Conceito
5560 visitas
Conceito
3800 visitas
Conceito
3637 visitas
Conceito
3281 visitas
Conceito
2565 visitas
ilustração rodapé
Molécula
8044 visitas
Molécula
7078 visitas
Molécula
6325 visitas
Molécula
6205 visitas
Molécula
5455 visitas
Molécula
5267 visitas
Molécula
4930 visitas
Molécula
4567 visitas
Molécula
4516 visitas
Molécula
4435 visitas
Molécula
3979 visitas
Molécula
3901 visitas
Molécula
3854 visitas
Molécula
3852 visitas
Molécula
3730 visitas
Molécula
3722 visitas
Molécula
3642 visitas
Molécula
3608 visitas
Molécula
3598 visitas
Molécula
3530 visitas
Molécula
3524 visitas
Molécula
3422 visitas
Molécula
3361 visitas
Molécula
3250 visitas
Molécula
3183 visitas
Molécula
3107 visitas
Molécula
3070 visitas
Molécula
3066 visitas
Molécula
3062 visitas
Molécula
3000 visitas
Molécula
2965 visitas
Molécula
2958 visitas
Molécula
2918 visitas
Molécula
2911 visitas
Molécula
2900 visitas
Molécula
2856 visitas
Molécula
2831 visitas
Molécula
2798 visitas
Molécula
2749 visitas
Molécula
2692 visitas
Molécula
2692 visitas
Molécula
2672 visitas
Molécula
2616 visitas
Molécula
2614 visitas
Molécula
2598 visitas
Molécula
2584 visitas
Molécula
2582 visitas
Molécula
2512 visitas
Molécula
2495 visitas
Molécula
2463 visitas
Molécula
2438 visitas
Molécula
2431 visitas
Molécula
2430 visitas
Molécula
2428 visitas
Molécula
2402 visitas
Molécula
2365 visitas
Molécula
2322 visitas
Molécula
2316 visitas
Molécula
2253 visitas
Molécula
2230 visitas
Molécula
2227 visitas
Molécula
2207 visitas
Molécula
2148 visitas
Molécula
2142 visitas
Molécula
2141 visitas
Molécula
2127 visitas
Molécula
2074 visitas
Molécula
2073 visitas
Molécula
2063 visitas
Molécula
2051 visitas
Molécula
2049 visitas
Molécula
2047 visitas
Molécula
2040 visitas
Molécula
2012 visitas
Molécula
2002 visitas
Molécula
1957 visitas
Molécula
1953 visitas
Molécula
1922 visitas
Molécula
1913 visitas
Molécula
1898 visitas
Molécula
1894 visitas
Molécula
1880 visitas
Molécula
1862 visitas
Molécula
1839 visitas
Molécula
1831 visitas
Molécula
1830 visitas
Molécula
1806 visitas
Molécula
1796 visitas
Molécula
1783 visitas
Molécula
1772 visitas
Molécula
1742 visitas
Molécula
1719 visitas
Molécula
1714 visitas
Molécula
1709 visitas
Molécula
1688 visitas
Molécula
1656 visitas
Molécula
1641 visitas
Molécula
1638 visitas
Molécula
1599 visitas
Molécula
1568 visitas
Molécula
1567 visitas
Molécula
1555 visitas
Molécula
1517 visitas
Molécula
1471 visitas
Molécula
1463 visitas
Molécula
1450 visitas
Molécula
1448 visitas
Molécula
1411 visitas
Molécula
1399 visitas
Molécula
1391 visitas
Molécula
1375 visitas
Molécula
1301 visitas
Molécula
1292 visitas
Molécula
1276 visitas
Molécula
1245 visitas
Molécula
1216 visitas
Molécula
1167 visitas
Molécula
741 visitas
Molécula
624 visitas
ilustração rodapé
Sala de Aula
10528 visitas
Sala de Aula
10299 visitas
Sala de Aula
8776 visitas
Sala de Aula
7325 visitas
Sala de Aula
7142 visitas
Sala de Aula
6716 visitas
Sala de Aula
5941 visitas
Sala de Aula
4856 visitas
Sala de Aula
4784 visitas
Sala de Aula
4333 visitas
Sala de Aula
4319 visitas
Sala de Aula
4143 visitas
Sala de Aula
3903 visitas
Sala de Aula
3876 visitas
Sala de Aula
3857 visitas
Sala de Aula
3372 visitas
Sala de Aula
3339 visitas
Sala de Aula
3332 visitas
Sala de Aula
3326 visitas
Sala de Aula
3262 visitas
Sala de Aula
3186 visitas
Sala de Aula
3108 visitas
Sala de Aula
3016 visitas
Sala de Aula
3012 visitas
Sala de Aula
2980 visitas
Sala de Aula
2866 visitas
Sala de Aula
2601 visitas
Sala de Aula
2471 visitas
Sala de Aula
2430 visitas
Sala de Aula
2201 visitas
Sala de Aula
1971 visitas
Sala de Aula
1931 visitas
ilustração rodapé
ilustração rodapé
Materiais Associados
ilustração rodapé
Laboratório de Tecnologia Educacional
Departamento de Bioquímica
Instituto de Biologia - Caixa Postal n° 6109
Universidade Estadual de Campinas - UNICAMP
CEP 13083-970, Campinas, SP, Brasil

Política de Privacidade