Idioma:
  Português  
Logotipo
Navegação
ilustração rodapé
Busca Rápida
Use palavras-chave para achar o que procura.
ilustração rodapé
Estatísticas
UO
0 usuários on-line
VO
86 visitantes on-line
VI
188.023 visitas
(Ano 2015)
ilustração rodapé
Redes Sociais
redeSocial2
redeSocial1
ilustração rodapé
RSS
RSS
ilustração rodapé
Pilhas e Baterias
ImprimirImprimir ImprimirEnviar para um amigo
Compartilhe: Delicious Facebook Twitter Digg Google Technorati Live Yahoo

Pilhas e Baterias: Funcionamento e Impacto Ambiental

Originalmente publicado em Química Nova na Ecola, n. 11, maio 2000
Apoio: Sociedade Brasileira de Química
Edição: Leila Cardoso Teruya
Coordenação: Guilherme Andrade Marson

Nesta última década assistiu-se a uma proliferação enorme de aparelhos eletroeletrônicos portáteis, tais como: brinquedos, jogos, relógios, lanternas, ferramentas elétricas, agendas eletrônicas, “walk-talks”, barbeadores, câmaras fotográficas, filmadoras, telefones celulares, computadores, aparelhos de som, instrumentos de medição e aferição, equipamentos médicos etc. Ao mesmo tempo, aumentou muito a demanda por pilhas e baterias cada vez menores, mais leves e de melhor desempenho. Conseqüentemente, existe atualmente no mercado uma grande variedade de pilhas e baterias a fim de atender às inúmeras exigências. A compreensão dos princípios de funcionamento dessa grande variedade de pilhas e baterias é uma tarefa árdua e requer, muitas vezes, um conhecimento profundo e multidisciplinar, já que vários destes sistemas eletroquímicos empregam tecnologia avançada. Apesar disto, pretende-se abordar primeiramente aqui, da forma mais simplificada possível, o funcionamento das pilhas e baterias que mais freqüentemente aparecem no nosso dia-a-dia.

Por outro lado, dado que algumas das pilhas e baterias disponíveis no mercado usam materiais tóxicos, muitos países, inclusive o Brasil, têm se preocupado com os riscos à saúde humana e ao meio ambiente que estes sistemas eletroquímicos apresentam. Neste sentido, o Conselho Nacional do Meio Ambiente - CONAMA publicou no Diário Oficial da União de 22 de julho de 1999 a Resolução n° 257, disciplinando o descarte e o gerenciamento ambientalmente adequado de pilhas e baterias usadas, no que tange à coleta, reutilização, reciclagem, tratamento ou disposição final. Tendo em conta o exposto acima, também será mencionado aqui, para cada uma das pilhas e baterias abordadas, o risco que representam aos seus consumidores e ao meio ambiente.

Nomenclatura e classificação dos sistemas eletroquímicos

Há um certa confusão na terminologia usada para se referir aos sistemas eletroquímicos. Em princípio, o termo pilha deveria ser empregado para se referir a um dispositivo constituído unicamente de dois eletrodos e um eletrólito, arranjados de maneira a produzir energia elétrica. O eletrólito pode ser líquido, sólido ou pastoso, mas deve ser, sempre, um condutor iônico. Quando os eletrodos são conectados a um aparelho elétrico uma corrente flui pelo circuito (vide pilha de Daniell no Quadro 1), pois o material de um dos eletrodos oxida-se espontaneamente liberando elétrons (anodo ou eletrodo negativo), enquanto o material do outro eletrodo reduz-se usando esses elétrons (catodo ou eletrodo positivo). O termo bateria deveria ser usado para se referir a um conjunto de pilhas agrupadas em série ou paralelo, dependendo da exigência por maior potencial ou corrente, respectivamente, conforme ilustrado no Quadro 2. Entretanto, no dia-a-dia, os termos pilha e bateria têm sido usados indistintamente para descrever sistemas eletroquímicos fechados que armazenam energia. O termo acumulador elétrico também aparece muitas vezes, mas é empregado, quase sempre, como sinônimo de bateria.

A convenção mais usada para representar um sistema eletroquímico é aquela de escrever o anodo do lado esquerdo e o catodo do lado direito. Assim, quando se escreve bateria sódio/ enxofre significa que o sódio e o enxofre são os reagentes ativos no anodo e catodo, respectivamente. Entretanto, alguns sistemas eletroquímicos não obedecem a esta regra geral quando citados; os casos mais comuns são os sistemas: chumbo/óxido de chumbo, cádmio/óxido de níquel e zinco/dióxido de manganês, mais conhecidos como chumbo/ácido, níquel/ cádmio e Leclanché, respectivamente. Além destes, outros sistemas eletroquímicos mais avançados e modernos também não seguem a regra mencionada.

Os sistemas eletroquímicos podem ser diferenciados uns dos outros, tendo em conta a maneira como funcionam. Assim, embora alguns sejam denominados de forma especial (vide Quadro 3), todos eles podem ser classificados como:

Baterias primárias

Distintas das demais por serem essencialmente não recarregáveis. Exemplos: zinco/dióxido de manganês (Leclanché), zinco/dióxido de manganês (alcalina), zinco/óxido de prata, lítio/dióxido de enxofre, lítio/dióxido de manganês etc.

Baterias secundárias

Baterias recarregáveis que podem ser reutilizadas muitas vezes pelos usuários (centenas e até milhares de vezes para o caso de baterias especialmente projetadas). Como regra geral, um sistema eletroquímico é considerado secundário quando é capaz de suportar 300 ciclos completos de carga e descarga com 80% da sua capacidade. Exemplos: cádmio/óxido de níquel (níquel/cádmio), chumbo/óxido de chumbo (chumbo/ácido), hidreto metálico/ óxido de níquel, íons lítio etc.

O princípio de funcionamento de algumas baterias primárias e secundárias freqüentemente encontradas no mercado nacional, bem como o risco que representam aos consumidores e ao meio ambiente, está descrito a seguir.

Principais baterias primárias comercializadas

Dentre as inúmeras baterias primárias comercializadas, as que se destacam no mercado nacional são: zinco/ dióxido de manganês (Leclanché), zinco/ dióxido de manganês (alcalina) e lítio/dióxido de manganês. Todas são sempre produzidas hermeticamente fechadas em dimensões padronizadas internacionalmente nas formas cilíndricas (tamanhos AA, AAA etc.), tipo botão e tipo moeda. Além dessas, a forma prismática também pode ser encontrada para aplicações especiais. A preferência pela forma cilíndrica ocorre pela maior facilidade de produção quando comparada com as demais formas.

Pilha de zinco/dióxido de manganês (Leclanché)

Inventada pelo químico francês George Leclanché em 1860, é a mais comum das baterias primárias. A pilha de zinco/dióxido de manganês usada hoje é muito parecida com a versão original. O eletrólito é uma pasta formada pela mistura de cloreto de amônio e cloreto de zinco. O anodo é de zinco metálico, usado, geralmente, na forma de chapa para confecção da caixa externa da pilha. O catodo é um bastão de grafite, geralmente cilíndrico, rodeado por uma mistura em pó de dióxido de manganês e grafite (vide Figura 1). A pilha de zinco/dióxido de manganês fornece um potencial de circuito aberto (medido com um voltímetro de alta impedância) no intervalo entre 1,55 V e 1,74 V, a temperatura ambiente.

Figura 1: Pilha de zinco/dióxido de manganês (Leclanché).

Figura 1: Pilha de zinco/dióxido de manganês (Leclanché).

As reações que ocorrem durante o processo de descarga das pilhas de zinco/dióxido de manganês são complexas e alguns detalhes ainda não foram completamente entendidos. O processo de descarga básico consiste na oxidação do zinco no anodo:

Zn(s) + 2NH4Cl(aq) + 2OH(aq) → Zn(NH3)2Cl2(s) + 2H2O(l) + 2e (1)

juntamente com a redução do Mn(IV) a Mn(III) no catodo:

2MnO2(s) + 2H2O(l) + 2e → 2MnOOH(s) + 2OH(aq) (2)

resultando na seguinte reação global:

Zn(s) + 2MnO2(s) + 2NH4Cl(aq) → Zn(NH3)2Cl2(s) + 2MnOOH(s) (3)

As pilhas de zinco/dióxido de manganês apresentam uma relação custo benefício interessante somente para aplicações que requerem valores baixos e médios de corrente elétrica. A utilização de dióxido de manganês de alta qualidade e a substituição do cloreto de amônio do eletrólito por cloreto de zinco melhoram muito o desempenho das pilhas zinco/dióxido de manganês mesmo em aplicações que exigem correntes elétricas maiores. O principal problema observado neste tipo de pilha são as reações paralelas, também chamadas de reações de prateleira. Essas reações ocorrem durante o armazenamento das pilhas (antes de serem usadas) e durante o período em que permanecem em repouso entre distintas descargas, podendo provocar vazamentos. Para minimizar a ocorrência de tais reações, a grande maioria dos fabricantes adiciona pequenas quantidades de sais de mercúrio solúveis ao eletrólito da pilha; agentes tensoativos e quelantes, cromatos e dicromatos também são usados por alguns poucos fabricantes. Esses aditivos diminuem a taxa de corrosão do zinco metálico e, conseqüentemente, o desprendimento de gás hidrogênio no interior da pilha. Com isso, a pressão interna das pilhas é bastante reduzida, minimizando-se os vazamentos.

Outro fato muito importante com relação às pilhas de zinco/dióxido de manganês diz respeito ao material usado como anodo. Na grande maioria das pilhas comercializadas, esse eletrodo consiste de uma liga de zinco contendo pequenas quantidades de chumbo e cádmio, a fim de se obter propriedades mecânicas adequadas para se trabalhar com a liga. Com isso, as pilhas zinco/dióxido de manganês contêm, em suas composições mercúrio, chumbo e cádmio e podem representar sérios riscos ao meio ambiente. Pela Resolução n° 257 do CONAMA, a partir de janeiro de 2001 essas pilhas deverão ser fabricadas, importadas e comercializadas com no máximo 0010% de mercúrio, 0015% de cádmio e 0200% de chumbo, informações estas que deverão estar presentes nas suas embalagens. As pilhas usadas que atenderem a esses limites poderão ser dispostas, juntamente com os resíduos domiciliares, em aterros sanitários licenciados. Enquanto os fabricantes dessas pilhas não reduzirem os teores das substâncias tóxicas contidas nelas até os limites estabelecidos pela Resolução n° 257 do CONAMA, os estabelecimentos que comercializam essas pilhas ficam obrigados a aceitar dos usuários a devolução das unidades usadas.

Figura 2: Pilha de zinco/dióxido de manganês (alcalina).

Figura 2: Pilha de zinco/dióxido de manganês (alcalina).

Pilha de zinco/dióxido de manganês (alcalina)

Esse tipo de pilha é uma concepção modificada da pilha zinco/dióxido de manganês. Utiliza-se dos mesmos eletrodos (anodo e catodo), porém o eletrólito é uma solução aquosa de hidróxido de potássio concentrada (~30% em massa) contendo uma dada quantidade de óxido de zinco; daí a denominação alcalina para essa pilha. Além disso, o seu recipiente externo é confeccionado em chapa de aço para garantir melhor vedação e prevenir, portanto, o risco de vazamento de eletrólito altamente cáustico. Com isso, o arranjo dos eletrodos e eletrólito na pilha alcalina é bem distinto daquele da Leclanché (vide Figura 2). A sua primeira versão data de 1882 e empregava o eletrólito na forma líquida. Somente a partir de 1949, elas passaram a ser produzidas comercialmente com o eletrólito na forma pastosa. A pilha de zinco/dióxido de manganês (alcalina) fornece um potencial de circuito aberto de 1,55 V, a temperatura ambiente.

A reação de descarga que ocorre no catodo da pilha alcalina é exatamente a mesma da Leclanché (eq. 2). Já a reação de descarga no anodo consiste na oxidação do zinco em meio básico, resultando primeiramente em íons zincato. Quando a solução de hidróxido de potássio é saturada em íons zincato, o produto da reação de oxidação do zinco passa a ser o hidróxido de zinco:

Zn(s) + 2OH(aq) → Zn(OH)2(s) + 2e (4)

Dessa forma, a reação global resultante é:

Zn(s) + 2MnO2(s) + 2H2O(l) → Zn(OH)2(s) + 2MnOOH(s) (5)

Dado que esta última reação é reversível, a pilha alcalina pode ser também produzida como pilha recarregável (bateria secundária). Para isso, são necessárias pequenas modificações no projeto de construção, porém seu desempenho é muito menor do que o das baterias secundárias tradicionais.

Por outro lado, o desempenho da pilha alcalina primária é bastante superior ao da pilha Leclanché. A capacidade de descarga (corrente elétrica gerada num dado tempo) é cerca de quatro vezes maior em aplicações que requerem altas correntes elétricas, em regime de descarga contínua. Ademais, as pilhas alcalinas não apresentam as reações paralelas ou de prateleira e os vazamentos observados nas pilhas de Leclanché. Por isso, podem ser armazenadas por longos períodos de tempo (cerca de 4 anos), mantendo mais do que 80% da sua capacidade inicial. Entretanto, o custo mais elevado das pilhas alcalinas tem reprimido o seu consumo no Brasil. Atualmente, o seu consumo gira em torno de 30%, enquanto que o das pilhas de Leclanché está em aproximadamente 70%.

Do ponto de vista ambiental, as pilhas alcalinas representam menor risco, já que não contêm metais tóxicos, como mercúrio, chumbo e cádmio. Devido a isso, há uma tendência mundial em se mudar para elas, já detectada em outros países como Estados Unidos, Alemanha e Argentina, onde ocupam cerca de 70% do mercado.

Pilha de lítio/dióxido de manganês

Essa e outras pilhas primárias que empregam lítio como anodo passaram a ser investigadas com o advento da exploração espacial (início da década de 1960). Isso ocorreu pela necessidade de pequenos sistemas eletroquímicos duráveis, confiáveis e capazes de armazenar grande quantidade de energia. Dessa forma, materiais contendo substâncias simples e/ou compostas de elementos químicos localizados do lado esquerdo superior e do lado direito superior da tabela periódica vieram a ser os mais estudados. Os metais lítio e sódio passaram a ser utilizados como catodos e substâncias compostas contendo flúor, cloro e oxigênio como anodos. Assim, centenas de sistemas foram propostos, mas poucos sobreviveram em função das exigências práticas. Dentre esses, estão as baterias primárias que usam como anodo o lítio metálico e como catodo três grupos de compostos: (i) sólidos com baixa solubilidade no eletrólito (cromato de prata -Ag2CrO4, dióxido de manganês -MnO2, óxido de cobre - CuO, sulfeto de cobre -CuS etc.); (ii) produtos solúveis no eletrólito (dióxido de enxofre -SO2) e; (iii) líquidos (cloreto de tionila -SOCl2, cloreto de sulfurila -SO2Cl2 e cloreto de fosforila -POCl3).

Figura 3: Pilha de lítio/dióxido de manganês.

Figura 3: Pilha de lítio/dióxido de manganês.

Devido à alta reatividade do lítio metálico com água, todas as pilhas de lítio empregam eletrólitos não aquosos (sal de lítio dissolvido em solventes não aquosos) em recipientes hermeticamente selados. Os componentes destas pilhas podem ser configurados de maneira semelhante à das pilhas alcalinas, mas muitas vezes os eletrodos são confeccionados na forma de tiras enroladas, como é o caso das pilhas lítio/dióxido de manganês, muito usadas em câmaras fotográficas (vide Figura 3). O processo de descarga destas pilhas consiste nas reações de oxidação do lítio metálico e de redução do óxido metálico, resultando na seguinte reação global simplificada:

Li(s) + MO(s) → LiO(s) + M(s) (6)

Entretanto, quando o óxido é o dióxido de manganês, o processo de descarga ainda não está completamente entendido. A pilha de lítio/dióxido de manganês fornece um potencial de circuito aberto no intervalo de 3,0 V a 3,5 V, a temperatura ambiente. Não apresenta reações paralelas ou de prateleira e mostra excelente desempenho mesmo em aplicações que operam em temperaturas maiores que a ambiente.

Um maior uso das pilhas de lítio tem sido impedido não somente pelo seu alto custo, mas também pelos riscos associados com o lítio metálico. Pilhas vedadas de maneira imprópria podem expor o lítio à umidade do ar e provocar chamas no metal e no solvente não aquoso. Tais acidentes têm sido evitados com a produção de pilhas bem vedadas e com sua utilização apropriada.

Principais baterias secundárias comercializadas

As baterias secundárias que dominam o mercado nacional são: chumbo/ óxido de chumbo (chumbo/ácido), cádmio/óxido de níquel (níquel/cádmio), hidreto metálico/óxido de níquel e íons lítio. Diferentemente das baterias primárias, as baterias secundárias são usadas principalmente em aplicações que requerem alta potência (maiores correntes elétricas num menor tempo). As características específicas de algumas delas são descritas a seguir.

Bateria chumbo/óxido de chumbo (chumbo/ácido)

Sua história começou em 1859, quando o físico francês Raymond Gaston Planté construiu o primeiro sistema recarregável, formando a base para as baterias secundárias chumbo/ácido usadas até hoje. Essas baterias apresentam a característica pouco usual de envolver em ambos os eletrodos o mesmo elemento químico, o chumbo. No catodo, o dióxido de chumbo reage com ácido sulfúrico durante o processo de descarga, produzindo sulfato de chumbo e água:

PbO2(s) + 4H+(aq) + SO42–(aq) + 2e → PbSO4(s) + 2H2O(l) (7)

No anodo, chumbo reage com íons sulfato formando sulfato de chumbo:

Pb(s) + SO42–(aq) → PbSO4(s) + 2e (8)

A reação global apresenta somente sulfato de chumbo e água como produtos:

Pb(s) + PbO2(s) + 2H2SO4(aq) → 2PbSO4(s) + 2H2O(l) (9)

À medida que a bateria chumbo/ ácido é descarregada, o ácido sulfúrico é consumido e a água é produzida. Conseqüentemente, a composição do ácido sulfúrico no eletrólito e sua densidade variam desde 40% (m/m) e 1,30 g/cm3, no estado completamente carregado, até cerca de 16% (m/m) e 1,10 g/cm3, no estado descarregado. Dado que o potencial de circuito aberto depende da concentração de ácido sulfúrico no eletrólito e da temperatura, o valor deste potencial para um único par de eletrodos varia de 2,15 V, no estado carregado, até 1,98 V, no estado descarregado, a temperatura ambiente. A medida da densidade do eletrólito ao longo do processo de descarga da bateria é usada, portanto, para avaliar seu estado de carga. No processo de carga, o sulfato de chumbo é reconvertido a chumbo no anodo e a dióxido de chumbo no catodo.

Os principais tipos de baterias chumbo/ ácido são as automotivas, industriais e seladas, com um predomínio marcante das primeiras. As automotivas são usadas em veículos em geral para alimentar os sistemas de partida, iluminação e ignição e consistem de seis conjuntos de eletrodos na forma de placas, contidos em vasos independentes. Um vaso pode conter, por exemplo, 6 anodos e 5 catodos arranjados de forma alternada, começando e terminando com um anodo. Estes onze eletrodos são conectados em paralelo e, portanto, cada vaso fornece um potencial de cerca de 2 V. Os seis vasos são então conectados em série e a bateria fornece um potencial de aproximadamente 12 V (vide Figura 4). As baterias industriais são utilizadas para tracionar motores de veículos elétricos e também em serviços que não podem ser interrompidos em caso de queda de energia elétrica (companhias telefônicas, hospitais etc.). Já as seladas, de menor tamanho, são usadas para alimentar computadores, luzes de emergência etc., em caso de queda de energia. As baterias automotivas e industriais requerem adição periódica de água no eletrólito. Isso ocorre porque, no processo de carga da bateria chumbo/ácido, parte da água é decomposta nos gases hidrogênio e oxigênio. As baterias automotivas de baixa manutenção, além de serem projetadas para consumir menos água, contêm um volume de eletrólito em excesso, calculado de maneira a compensar a perda de água ao longo de sua vida útil (2 a 5 anos).

Figura 4: Bateria chumbo/óxido de chumbo (chumbo/ácido).

Figura 4: Bateria chumbo/óxido de chumbo (chumbo/ácido).

Como visto, as baterias chumbo/ ácido funcionam à base de chumbo, um metal pesado e tóxico e, portanto, representam sério risco ao meio ambiente. Na realidade, a grande maioria das baterias exauridas já é recolhida pelos fabricantes nacionais para recuperar o chumbo nelas contido, uma vez que o Brasil não dispõe de minas deste metal e o seu preço é relativamente alto no mercado internacional. O maior problema está no método de recuperação usado pelas empresas, já que é, quase sempre, inadequado. O método mais usado ainda é o pirometalúrgico, em vez do eletroidrometalúrgico, o que termina contaminando a atmosfera com óxidos de enxofre (SOx) e com chumbo particulado.

Bateria cádmio/óxido de níquel (níquel/cádmio)

Foi primeiramente proposta pelo sueco Waldemar Jungner em 1899. Consiste de um anodo formado por uma liga de cádmio e ferro e um catodo de hidróxido(óxido) de níquel(III) imersos em uma solução aquosa de hidróxido de potássio com concentração entre 20% e 28% em massa. Durante o processo de descarga, o cádmio metálico é oxidado a hidróxido de cádmio no anodo:

Cd(s) + 2OH(aq) → Cd(OH)2(s) + 2e (10)

e o hidróxido(óxido) de níquel(III) é reduzido a hidróxido de níquel(II) hidratado no catodo:

2NiOOH(s) + 4H2O(l) + 2e → 2Ni(OH)2.H2O(s) + 2OH(aq) (11)

resultando na seguinte reação global:

Cd(s) + 2NiOOH(s) + 4H2O(l) → Cd(OH)2(s) + 2Ni(OH)2.H2O(s) (12)

Um único par de eletrodos das baterias níquel/cádmio, que podem ser arranjados como os das baterias alcalina (Figura 2) ou chumbo/ácido (Figura 4), fornece um potencial de circuito aberto de aproximadamente 1,15 V, a temperatura ambiente. Essas baterias podem ser produzidas numa grande variedade de tamanhos, usando-se, em geral, chapa de aço inoxidável como material do recipiente externo. Da mesma forma que as baterias alcalinas, as baterias níquel/cádmio são, na maioria dos casos, seladas para evitar vazamento de eletrólito cáustico; quando não são completamente seladas, dispõem de válvulas de segurança para descompressão.

As baterias níquel/cádmio caracterizam-se por apresentar correntes elétricas relativamente altas, potencial quase constante, capacidade de operar a baixas temperaturas e vida útil longa. Entretanto, o custo de sua produção é bem maior do que o das baterias chumbo/ácido. Pelo fato de empregarem cádmio em sua composição, essas baterias são consideradas as de maior impacto ambiental. Devido a isso e ao recente avanço tecnológico em armazenamento de hidrogênio, há uma tendência mundial em substituílas pelas baterias hidreto metálico/óxido de níquel, cujas características operacionais são muito semelhantes às da níquel/cádmio. A principal diferença é que as baterias hidreto metálico/óxido de níquel usam como material ativo do anodo o hidrogênio absorvido na forma de hidreto metálico, em vez de cádmio. Com isso, a reação de descarga desse eletrodo é a oxidação do hidreto metálico, regenerando o metal, que na realidade é uma liga metálica:

MH(s) + OH(aq) → M(s) + H2O(l) + e (13)

Esta última equação, combinada com a eq. 10 dividida por dois, fornece a reação global de descarga da bateria hidreto metálico/óxido de níquel:

MH(s) + NiOOH(s) + H2O(l) → M(s) + Ni(OH)2.H2O(s) (14)

Um par de eletrodos fornece um potencial de circuito aberto de aproximadamente 1,20 V, a temperatura ambiente. Estas baterias apresentam desempenho superior ao das de níquel/ cádmio, mas ainda são produzidas a um custo um pouco superior.

Bateria de íons lítio

Assim denominada, porque usa, em vez de lítio metálico, apenas íons lítio, presentes no eletrólito na forma de sais de lítio dissolvidos em solventes não aquosos. Durante o processo de descarga, os íons lítio migram desde o interior do material que compõe o anodo até dentro do material do catodo e os elétrons movem-se através do circuito externo, como ilustrado na Figura 5. Portanto, os materiais de eletrodos são formados geralmente por compostos de estrutura aberta (denominados compostos de intercalação), que permitem a entrada e saída de íons lítio. No anodo, o grafite é o material mais comumente usado porque, além de apresentar estrutura lamelar, é capaz de intercalar reversivelmente os íons lítio entre suas camadas de carbono sem alterar significativamente sua estrutura. O catodo contém, geralmente, um óxido de estrutura lamelar (LiCoO2, LiNiO2 etc.) ou espinel (LiMnO2), sendo o óxido de cobalto litiado o material mais freqüentemente usado pelos fabricantes de baterias de íons lítio. Dessa forma, durante a descarga da bateria a reação que ocorre no anodo é a oxidação do carbono e a conseqüente liberação de íons lítio a fim de manter a eletroneutralidade do material:

LiyC6(s) → C6(s) + yLi+(solv) + ye (15)

No catodo, o cobalto se reduz na estrutura do óxido, provocando a entrada de íons lítio em sua estrutura:

LixCoO2(s) + yLi+(solv) + ye → Lix+yCoO2(s) (16)

Conseqüentemente, a reação global de descarga é:

LixCoO2(s) + LiyC6(s) → Lix+yCoO2(s) + C6(s) (17)

sendo que um par de eletrodos fornece um potencial de circuito aberto no intervalo de 3,0 V a 3,5 V, a temperatura ambiente. As principais características das baterias de íons lítio são bom desempenho e segurança aos usuários. Além disso, o fato de empregarem materiais de baixa densidade permite que sejam projetadas para terem menor massa, tamanho e custo.

Figura 5: Ilustração esquemática dos processos eletroquímicos que ocorrem nas baterias de íons lítio.

Figura 5: Ilustração esquemática dos processos eletroquímicos que ocorrem nas baterias de íons lítio.

Tanto as baterias hidreto metálico/óxido de níquel como as de íons lítio representam riscos ambientais muito menores do que as de níquel/ cádmio. Apesar disso, uma estimativa da Secretaria do Meio Ambiente mostra que, em 1999, das 5 milhões de baterias de telefones celulares existentes no Brasil, 80% ainda eram de níquel/cádmio e apenas 18% de hidreto metálico/óxido de níquel e 2% de íons lítio.

Considerações finais

Como visto acima, algumas das baterias primárias e secundárias comercializadas no país ainda podem conter em sua composição metais pesados altamente tóxicos, como mercúrio, cádmio ou chumbo, e representam, conseqüentemente, sérios riscos ao meio ambiente. Uma delas é a pilha zinco/dióxido de manganês, que pode conter uma ou mais dessas substâncias tóxicas com teores acima do limite estabelecido pela Resolução n° 257 do CONAMA, a saber: 0010% de mercúrio, 0015% de cádmio e 0200% de chumbo. As outras duas são as baterias chumbo/ácido e níquel/cádmio, uma vez que os metais chumbo e cádmio são usados como eletrodos dessas respectivas baterias. Em conformidade com a Resolução citada acima, essas pilhas e baterias usadas jamais devem ser: a) lançadas in natura a céu aberto, tanto em áreas urbanas como rurais; b) queimadas a céu aberto ou em recipientes, instalações ou equipamentos não adequados; c) lançadas em corpos d’água, praias, manguezais, terrenos baldios, peças ou cacimbas, cavidades subterrâneas, em redes de drenagem de águas pluviais, esgotos, eletricidade ou telefone, mesmo que abandonadas, ou em áreas sujeitas à inundação. A destinação final mais apropriada para essas pilhas e baterias usadas são os estabelecimentos que as comercializam, bem como a rede de assistência técnica autorizada pelos fabricantes e importadores desses produtos. Estes serão responsáveis pelos procedimentos de reutilização, reciclagem, tratamento ou disposição final ambientalmente adequada para as pilhas e baterias coletadas.

  • Referências
    1. BENNET, P.D.; BULLOCHK, K.R. e FIORINO, M.E. Aqueous rechargeable batteries. The Electrochemical Society Interface, v. 4, n. 4, p. 26-30, 1995.
    2. BRO, P. Primary batteries. The Electrochemical Society Interface, v. 4, n. 4, p. 42-45, 1995.
    3. BRODD, R.J. Recent developments in batteries for portable consumer electronics applications. The Electrochemical Society Interface, v. 8, n. 3, p. 20-23, 1999.
    4. LINDEN, D. (Editor). Handbook of batteries and fuel cells. 2ª ed. Nova Iorque: McGraw-Hill, 1995.
    5. MEGAHED, S. e SCROSATI, B. Rechargeable nonaqueous batteries. The Electrochemical Society Interface, v. 4, n. 4, p. 34-37, 1995.
    6. MELLO, S. Pilhas e baterias: indústria terá de oferecer opções para descarte. Saneamento Ambiental, v. 10, n. 61, p. 26- 29, 1999.
    7. VINCENT, C.A.; BONINO, F.; LAZZARI, M. e SCROSATI, B. Modern batteries: an introduction to electrochemical power sources. Londres: Edward Arnold, 1984.
ImprimirImprimir ImprimirEnviar para um amigo
Compartilhe: Delicious Facebook Twitter Digg Google Technorati Live Yahoo
Login
ilustração rodapé
Tema
97981 visitas
Tema
56034 visitas
Tema
50666 visitas
Tema
44431 visitas
Tema
32184 visitas
Tema
31618 visitas
Tema
30992 visitas
Tema
29182 visitas
Tema
23430 visitas
Tema
21271 visitas
Tema
21155 visitas
Tema
20568 visitas
Tema
19955 visitas
Tema
19859 visitas
Tema
19633 visitas
Tema
18894 visitas
Tema
16549 visitas
Tema
16147 visitas
Tema
13797 visitas
Tema
12896 visitas
Tema
10830 visitas
Tema
10464 visitas
Tema
8777 visitas
Tema
8629 visitas
Tema
8486 visitas
Tema
7891 visitas
Tema
4159 visitas
Tema
3722 visitas
Tema
3490 visitas
Tema
3124 visitas
Tema
2538 visitas
Tema
2006 visitas
Tema
1772 visitas
ilustração rodapé
Conceito
78578 visitas
Conceito
70027 visitas
Conceito
52051 visitas
Conceito
50619 visitas
Conceito
47427 visitas
Conceito
37790 visitas
Conceito
36250 visitas
Conceito
34299 visitas
Conceito
29896 visitas
Conceito
27372 visitas
Conceito
25369 visitas
Conceito
24047 visitas
Conceito
17170 visitas
Conceito
17057 visitas
Conceito
16353 visitas
Conceito
16149 visitas
Conceito
16128 visitas
Conceito
15310 visitas
Conceito
14954 visitas
Conceito
14046 visitas
Conceito
13649 visitas
Conceito
13051 visitas
Conceito
12659 visitas
Conceito
10702 visitas
Conceito
10243 visitas
Conceito
8627 visitas
Conceito
7683 visitas
Conceito
6373 visitas
Conceito
5270 visitas
Conceito
4206 visitas
Conceito
3949 visitas
Conceito
3171 visitas
ilustração rodapé
Molécula
8782 visitas
Molécula
7873 visitas
Molécula
6553 visitas
Molécula
6358 visitas
Molécula
5867 visitas
Molécula
5439 visitas
Molécula
5419 visitas
Molécula
4746 visitas
Molécula
4679 visitas
Molécula
4613 visitas
Molécula
4282 visitas
Molécula
4258 visitas
Molécula
4175 visitas
Molécula
4126 visitas
Molécula
4070 visitas
Molécula
3954 visitas
Molécula
3929 visitas
Molécula
3909 visitas
Molécula
3832 visitas
Molécula
3775 visitas
Molécula
3774 visitas
Molécula
3715 visitas
Molécula
3637 visitas
Molécula
3470 visitas
Molécula
3465 visitas
Molécula
3403 visitas
Molécula
3398 visitas
Molécula
3293 visitas
Molécula
3287 visitas
Molécula
3240 visitas
Molécula
3222 visitas
Molécula
3212 visitas
Molécula
3176 visitas
Molécula
3092 visitas
Molécula
3083 visitas
Molécula
3057 visitas
Molécula
3024 visitas
Molécula
3016 visitas
Molécula
2917 visitas
Molécula
2909 visitas
Molécula
2886 visitas
Molécula
2881 visitas
Molécula
2850 visitas
Molécula
2777 visitas
Molécula
2723 visitas
Molécula
2715 visitas
Molécula
2706 visitas
Molécula
2681 visitas
Molécula
2647 visitas
Molécula
2602 visitas
Molécula
2581 visitas
Molécula
2573 visitas
Molécula
2565 visitas
Molécula
2548 visitas
Molécula
2545 visitas
Molécula
2510 visitas
Molécula
2436 visitas
Molécula
2426 visitas
Molécula
2425 visitas
Molécula
2417 visitas
Molécula
2339 visitas
Molécula
2320 visitas
Molécula
2301 visitas
Molécula
2260 visitas
Molécula
2236 visitas
Molécula
2218 visitas
Molécula
2192 visitas
Molécula
2183 visitas
Molécula
2182 visitas
Molécula
2158 visitas
Molécula
2157 visitas
Molécula
2153 visitas
Molécula
2145 visitas
Molécula
2122 visitas
Molécula
2096 visitas
Molécula
2079 visitas
Molécula
2077 visitas
Molécula
2076 visitas
Molécula
2029 visitas
Molécula
2010 visitas
Molécula
2009 visitas
Molécula
1998 visitas
Molécula
1982 visitas
Molécula
1963 visitas
Molécula
1948 visitas
Molécula
1943 visitas
Molécula
1937 visitas
Molécula
1937 visitas
Molécula
1913 visitas
Molécula
1900 visitas
Molécula
1895 visitas
Molécula
1868 visitas
Molécula
1866 visitas
Molécula
1818 visitas
Molécula
1777 visitas
Molécula
1737 visitas
Molécula
1722 visitas
Molécula
1719 visitas
Molécula
1708 visitas
Molécula
1687 visitas
Molécula
1686 visitas
Molécula
1684 visitas
Molécula
1656 visitas
Molécula
1573 visitas
Molécula
1568 visitas
Molécula
1565 visitas
Molécula
1561 visitas
Molécula
1550 visitas
Molécula
1529 visitas
Molécula
1512 visitas
Molécula
1483 visitas
Molécula
1461 visitas
Molécula
1375 visitas
Molécula
1356 visitas
Molécula
1350 visitas
Molécula
1301 visitas
Molécula
1241 visitas
Molécula
770 visitas
Molécula
643 visitas
ilustração rodapé
Sala de Aula
10976 visitas
Sala de Aula
10445 visitas
Sala de Aula
9233 visitas
Sala de Aula
7660 visitas
Sala de Aula
7472 visitas
Sala de Aula
7167 visitas
Sala de Aula
6185 visitas
Sala de Aula
5932 visitas
Sala de Aula
5366 visitas
Sala de Aula
4877 visitas
Sala de Aula
4631 visitas
Sala de Aula
4461 visitas
Sala de Aula
4414 visitas
Sala de Aula
4213 visitas
Sala de Aula
4185 visitas
Sala de Aula
4024 visitas
Sala de Aula
3599 visitas
Sala de Aula
3580 visitas
Sala de Aula
3564 visitas
Sala de Aula
3462 visitas
Sala de Aula
3457 visitas
Sala de Aula
3354 visitas
Sala de Aula
3330 visitas
Sala de Aula
3253 visitas
Sala de Aula
3183 visitas
Sala de Aula
3121 visitas
Sala de Aula
2851 visitas
Sala de Aula
2680 visitas
Sala de Aula
2612 visitas
Sala de Aula
2365 visitas
Sala de Aula
2192 visitas
Sala de Aula
2044 visitas
Sala de Aula
1021 visitas
ilustração rodapé
ilustração rodapé
Materiais Associados
ilustração rodapé
Laboratório de Tecnologia Educacional
Departamento de Bioquímica
Instituto de Biologia - Caixa Postal n° 6109
Universidade Estadual de Campinas - UNICAMP
CEP 13083-970, Campinas, SP, Brasil

Política de Privacidade